Patents by Inventor Benjamin Jean-Baptiste Francois Burger

Benjamin Jean-Baptiste Francois Burger has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240069245
    Abstract: A liquid lens including a first liquid comprising a polyfluoroaromatic compound represented by formula (I): Fx—(aromatic)—Y—R1. “x” is within a range of from 2 to 5. Y is one of CH2, Si(Alk)2, Ge(Alk)2, O, and S. “Alk” is a linear aliphatic chain. R1 is any organic group, but can be one of a linear aliphatic chain, a cycloaliphatic, a fluorocycloaliphatic, and an aromatic residue. “Aromatic” is any six carbon aromatic ring. Examples of the chemical compound represented by formula (I) include butylpentafluorobenzene; dimethylnonafluorohexylpentafluorophenylsilane; trimethylpentafluorophenylgennane; butoxypentafluorobenzene; cyclopentoxypentafluorobenzene; 1-n-octyloxypentafluorobenzene; cyclooctyloxypentafluorobenzene; 1-n-dodecyloxypentafluorobenzene; cyclopentylpentafluorophenylsulfide; phenoxypentafluorobenzene; 2,4-difluoroanisole; and heptafluoropentyloxypentafluorobenzene. The first liquid has a density in a range of from 0.95 g/mL to 1.35 g/mL (at 20° C.).
    Type: Application
    Filed: August 8, 2023
    Publication date: February 29, 2024
    Inventors: Benjamin Jean-Baptiste Francois Burger, Patrick Jean
  • Publication number: 20230124449
    Abstract: A liquid lens can include a cavity between first and second windows, first and second liquids in the cavity, and a variable interface between the liquids, thereby forming a variable lens. The liquid lens can be operable to adjust a shape of the variable interface at an operating temperature less than a melting point of the first liquid. A liquid composition of the first liquid can include at least 65 wt. % water, at most 31 wt. % of a freezing point reducing agent, at most 20 wt. % of an alkali metal salt, a melting point of greater than or equal to ?10° C., a viscosity of at most 1.3 cSt, measured at a temperature of 20° C., a refractive index, measured at a wavelength of 589.3 nm, of at most 1.4, and/or an Abbe number of at least 45. A volume of the cavity can be at most 10 ?L.
    Type: Application
    Filed: March 15, 2021
    Publication date: April 20, 2023
    Inventors: Julie Colette Anduran, Benjamin Jean-Baptiste Francois Burger, Raymond Miller Karam
  • Publication number: 20230099196
    Abstract: A liquid lens including (i) a first liquid and a second liquid disposed within a containment region, the first liquid and the second liquid forming an interface between the first liquid and the second liquid; (ii) an electrode; and (iii) an insulating layer separating the electrode from the first liquid and the second liquid, the insulating layer comprising a polymeric material and a slippery omniphobic covalently attached liquid that is chemically bonded to the polymeric material, the slippery omniphobic covalently attached liquid providing a surface contacting one or more of the first liquid and the second liquid. The polymeric material of the insulating layer can be a poly(para-xylylene). The slippery omniphobic covalently attached liquid can include units of a silicone or polyolefin, each unit individually bound to a repeating unit of the polymeric material. A liquid lens where the insulating layer has a quality factor at least 200.
    Type: Application
    Filed: July 12, 2022
    Publication date: March 30, 2023
    Inventor: Benjamin Jean-Baptiste Francois Burger
  • Publication number: 20220252861
    Abstract: Electrowetting optical devices can comprise a first electrode at least partially circumscribing a first optical window and a second electrode at least partially circumscribing a second optical window. The second optical window may be aligned with the first optical window in a direction of the optical axis. A central region may be defined by a projection of a footprint of the second optical window. An interface between a first liquid and a second liquid that may be disposed within a containment region may form a lens. In some embodiments, a thickness of a second dielectric portion at least partially circumscribing the central region may be greater than a thickness of a thirst dielectric portion within the central region. In some embodiments, a capacitance per area of the device upon application of a maximum operating voltage may be in a range from about 0.1 pF/mm2 to about 3.5 pF/mm2.
    Type: Application
    Filed: June 24, 2020
    Publication date: August 11, 2022
    Inventors: Jerome René Broutin, Benjamin Jean-Baptiste Francois Burger, Aude Contet, Géraldine Denise Juliette Malet-Vasseur, Nicolas Gilbert Jose Samper
  • Publication number: 20220099862
    Abstract: A liquid lens can include a lens body forming a cavity with a conducting liquid and an insulating liquid disposed therein, the conducting liquid substantially immiscible with the insulating liquid to define an interface between the conducting and insulating liquids. The conducting liquid can include an ionic compound of either a dicyanamide anion and a cation counterion, or a tricyanomethanide anion and a cation counterion, the dicyanamide anion having the formula the tricyanomethanide anion having the formula and the cation counterion is one of an imidazolium, a pyrrolidininium, a piperidinium, a phosphonium, a pyridinium, a pyrrolinium or a sulfonium cation. The ionic compound of the conducting liquid can be N-methyl-N-ethylpyrrolidinium dicyanamide, l-ethyl-3-methylimidazolium dicyanamide, 1-butyl-1-methylpyrrolidinium tricyanomethanide, or 1-ethyl-3-methylimidazolium tricyanomethanide, among others.
    Type: Application
    Filed: January 23, 2020
    Publication date: March 31, 2022
    Inventor: Benjamin Jean-Baptiste Francois Burger
  • Patent number: 11204492
    Abstract: An electrowetting optical device is provided. The electrowetting optical device includes a conductive liquid and a non-conductive liquid. The non-conductive fluid includes a naphthalene based compound having Formula (I), Formula (II), and/or Formula (III): where R1, R2, and R3 are individually alkyl, aryl, alkoxy, or aryloxy groups; X includes carbon, silicon, germanium, tin, lead, and combinations thereof; and Z includes oxygen, sulfur, selenium, tellurium, polonium, and combinations thereof. The conductive liquid may additionally include a transmission recovery agent having Formula (IV) and/or Formula (V): where R4 is an alkyl, fluoroalkyl, aryl, alkoxy, or aryloxy group. The electrowetting optical device additionally includes a dielectric surface in contact with both the conductive and non-conductive liquids where the conductive and non-conductive liquids are non-miscible.
    Type: Grant
    Filed: January 6, 2020
    Date of Patent: December 21, 2021
    Assignee: Corning Incorporated
    Inventors: Benjamin Jean-Baptiste Francois Burger, Geraldine Malet Vasseur
  • Publication number: 20210231943
    Abstract: An electrowetting optical device is provided. The electrowetting optical device includes a first window, a second window, and a cavity disposed between the first window and the second window. The electrowetting optical device additionally includes a first liquid and a second liquid disposed within the cavity, the first liquid and the second liquid substantially immiscible with each other and having different refractive indices such that an interface between the first liquid and the second liquid defines a variable lens. The electrowetting optical device also includes a common electrode in electrical connection with the first liquid and a driving electrode disposed on a sidewall of the cavity and insulated from the first liquid and the second liquid by an insulating polymer dielectric layer. The insulating polymer dielectric layer may be formed using initiated chemical vapor deposition (iCVD).
    Type: Application
    Filed: May 20, 2019
    Publication date: July 29, 2021
    Inventors: Robert Alan Bellman, Benjamin Jean-Baptiste Francois Burger, Michelle Dawn Fabian, Timothy Edward Myers
  • Publication number: 20200142180
    Abstract: An electrowetting optical device is provided. The electrowetting optical device includes a conductive liquid and a non-conductive liquid. The non-conductive fluid includes a naphthalene based compound having Formula (I), Formula (II), and/or Formula (III): where R1, R2, and R3 are individually alkyl, aryl, alkoxy, or aryloxy groups; X includes carbon, silicon, germanium, tin, lead, and combinations thereof; and Z includes oxygen, sulfur, selenium, tellurium, polonium, and combinations thereof. The conductive liquid may additionally include a transmission recovery agent having Formula (IV) and/or Formula (V): where R4 is an alkyl, fluoroalkyl, aryl, alkoxy, or aryloxy group. The electrowetting optical device additionally includes a dielectric surface in contact with both the conductive and non-conductive liquids where the conductive and non-conductive liquids are non-miscible.
    Type: Application
    Filed: January 6, 2020
    Publication date: May 7, 2020
    Inventors: Benjamin Jean-Baptiste Francois Burger, Geraldine Malet Vasseur
  • Patent number: 10558031
    Abstract: An electrowetting optical device is provided. The electrowetting optical device includes a conductive liquid and a non-conductive liquid. The non-conductive fluid includes a naphthalene based compound having Formula (I), Formula (II), and/or Formula (III): where R1, R2, and R3 are individually alkyl, aryl, alkoxy, or aryloxy groups; X includes carbon, silicon, germanium, tin, lead, and combinations thereof; and Z includes oxygen, sulfur, selenium, tellurium, polonium, and combinations thereof. The conductive liquid may additionally include a transmission recovery agent having Formula (IV) and/or Formula (V): where R4 is an alkyl, fluoroalkyl, aryl, alkoxy, or aryloxy group. The electrowetting optical device additionally includes a dielectric surface in contact with both the conductive and non-conductive liquids where the conductive and non-conductive liquids are non-miscible.
    Type: Grant
    Filed: April 4, 2019
    Date of Patent: February 11, 2020
    Assignee: Corning Incorporated
    Inventors: Benjamin Jean-Baptiste Francois Burger, Geraldine Malet Vasseur
  • Publication number: 20190293920
    Abstract: An electrowetting optical device is provided. The electrowetting optical device includes a conductive liquid and a non-conductive liquid. The non-conductive fluid includes a naphthalene based compound having Formula (I), Formula (II), and/or Formula (III): where R1, R2, and R3 are individually alkyl, aryl, alkoxy, or aryloxy groups; X includes carbon, silicon, germanium, tin, lead, and combinations thereof; and Z includes oxygen, sulfur, selenium, tellurium, polonium, and combinations thereof. The conductive liquid may additionally include a transmission recovery agent having Formula (IV) and/or Formula (V): where R4 is an alkyl, fluoroalkyl, aryl, alkoxy, or aryloxy group. The electrowetting optical device additionally includes a dielectric surface in contact with both the conductive and non-conductive liquids where the conductive and non-conductive liquids are non-miscible.
    Type: Application
    Filed: April 4, 2019
    Publication date: September 26, 2019
    Inventors: Benjamin Jean-Baptiste Francois Burger, Geraldine Malet Vasseur
  • Patent number: 10295819
    Abstract: An electrowetting optical device is provided. The electrowetting optical device includes a conductive liquid and a non-conductive liquid. The non-conductive fluid includes a naphthalene based compound having Formula (I), Formula (II), and/or Formula (III): where R1, R2, and R3 are individually alkyl, aryl, alkoxy, or aryloxy groups; X includes carbon, silicon, germanium, tin, lead, and combinations thereof; and Z includes oxygen, sulfur, selenium, tellurium, polonium, and combinations thereof. The conductive liquid may additionally include a transmission recovery agent having Formula (IV) and/or Formula (V): where R4 is an alkyl, fluoroalkyl, aryl, alkoxy, or aryloxy group. The electrowetting optical device additionally includes a dielectric surface in contact with both the conductive and non-conductive liquids where the conductive and non-conductive liquids are non-miscible.
    Type: Grant
    Filed: May 25, 2018
    Date of Patent: May 21, 2019
    Assignee: Corning Incorporated
    Inventors: Benjamin Jean-Baptiste Francois Burger, Geraldine Malet Vasseur