Patents by Inventor Benjamin John Eggleton

Benjamin John Eggleton has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230236285
    Abstract: The present application relates to radio detection and ranging (radar) systems and, in particular, to a radar system having a photonics-based signal generator. Such a radar system comprises a stepped-frequency optical signal generator, an optical-to-electrical converter, and a transmitter. The stepped-frequency optical signal generator is configured for converting an optical signal into a stepped-frequency optical signal. The optical-to-electrical converter for converting the stepped-frequency optical signal into a stepped-frequency electrical signal. The transmitter for transmitting a microwave signal based on the stepped-frequency electrical signal.
    Type: Application
    Filed: April 30, 2021
    Publication date: July 27, 2023
    Inventors: Ziqian Zhang, Yang Liu, Benjamin John Eggleton
  • Publication number: 20200366197
    Abstract: Disclosed is a multi-channel power controller. The multi-channel power controller comprises a processing system configured to generate one or more control signals, and one or more extender modules operatively coupled to the processing system. The one or more 5 extender modules are configured to receive an input electrical power. Each extender module of the one or more extender modules is configured to receive a control signal of the one or more control signals, receive a portion of the input electrical power, and generate a plurality of output electrical powers using the received control signal and the portion of the input electrical power. Also disclosed is a power control system.
    Type: Application
    Filed: December 21, 2018
    Publication date: November 19, 2020
    Inventors: Andri Mahendra, Philip Heng Wai Leong, Chunle Xiong, Benjamin John Eggleton
  • Patent number: 9042685
    Abstract: This invention concerns real-time multi-impairment signal performance monitoring. In particular it concerns an optical device, for instance a monolithic integrated photonics chip, comprising a waveguide having an input region to receive a signal for characterization, and a narrow band CW laser signal. A non-linear waveguide region to mix the two received signals. More than one output region, each equipped with bandpass filters that extract respective discrete frequency bands of the RF spectrum of the mixed signals. And, also comprising (slow) power detectors to output the extracted discrete frequency banded signals.
    Type: Grant
    Filed: June 20, 2011
    Date of Patent: May 26, 2015
    Assignee: The University of Sydney
    Inventors: Trung Duc Vo, William Peter Corcoran, Mark David Pelusi, David James Moss, Benjamin John Eggleton, Jochen Bernhard Schroeder
  • Patent number: 8718411
    Abstract: A method and apparatus for providing optical supercontinuum. The method comprises creating a spectrally narrow phase feature within a supercontinuum spectrum produced from a laser pulse that has been subjected to supercontinuum generation, thereby producing a modified supercontinuum spectrum, and propagating the modified supercontinuum spectrum through an optical waveguide that is suitable for supercontinuum generation, thereby further modifying the modified supercontinuum spectrum. The method may include modifying the modified supercontinuum spectrum by increasing its energy in a vicinity of the phase feature.
    Type: Grant
    Filed: July 5, 2007
    Date of Patent: May 6, 2014
    Assignee: The University of Sydney
    Inventors: Dane Austin, Benjamin John Eggleton, Carel Martijn De Sterke, Paul Steinvurzel, Jeremy Bolger, Thomas Brown, Feng Luan, Dong-Il Yeom
  • Patent number: 8620155
    Abstract: An optical noise monitoring method and monitor, the monitor comprising an optical transmitter for receiving at least a portion of an optical signal, a device arranged to extract a reflected optical signal comprising a portion of the optical signal back-reflected by stimulated Brillouin scattering in the optical transmitter, and a photodetector for receiving the reflected optical signal. The optical transmitter can scatter the optical signal by stimulated Brillouin scattering.
    Type: Grant
    Filed: June 13, 2008
    Date of Patent: December 31, 2013
    Assignee: The University of Sydney
    Inventors: Benjamin John Eggleton, Mark Pelusi, Timothy Iredale
  • Publication number: 20130209097
    Abstract: This invention concerns real-time multi-impairment signal performance monitoring, [n particular it concerns an optical device, for instance a monolithic integrated photonics chip, comprising a waveguide having an input region to receive a signal for characterization, and a narrow band CW laser signal. A non-linear waveguide region to mix the two received signals. More than one output region, each equipped with bandpass filters that extract respective discrete frequency bands of the RF spectrum of the mixed signals. And, also comprising (slow) power detectors to output the extracted discrete frequency banded signals.
    Type: Application
    Filed: June 20, 2011
    Publication date: August 15, 2013
    Applicant: THE UNIVERSITY OF SYDNEY
    Inventors: Trung Duc Vo, William Peter Corcoran, Mark David Pelusi, David James Moss, Benjamin John Eggleton, Jochen Bernhard Schroeder
  • Publication number: 20100178052
    Abstract: An optical noise monitoring method and monitor, the monitor comprising an optical transmitter for receiving at least a portion of an optical signal, a device arranged to extract a reflected optical signal comprising a portion of the optical signal back-reflected by stimulated Brillouin scattering in the optical transmitter, and a photodetector for receiving the reflected optical signal. The optical transmitter can scatter the optical signal by stimulated Brillouin scattering.
    Type: Application
    Filed: June 13, 2008
    Publication date: July 15, 2010
    Inventors: Benjamin John Eggleton, Mark Pelusi, Timothy Iredale
  • Publication number: 20100067555
    Abstract: A method and apparatus for providing optical supercontinuum. The method comprises creating a spectrally narrow phase feature within a supercontinuum spectrum produced from a laser pulse that has been subjected to supercontinuum generation, thereby producing a modified supercontinuum spectrum, and propagating the modified supercontinuum spectrum through an optical waveguide that is suitable for supercontinuum generation, thereby further modifying the modified supercontinuum spectrum. The method may include modifying the modified supercontinuum spectrum by increasing its energy in a vicinity of the phase feature.
    Type: Application
    Filed: July 5, 2007
    Publication date: March 18, 2010
    Applicant: The University of Sydney
    Inventors: Dane Austin, Benjamin John Eggleton, Carel Martijn De Sterke, Paul Steinvurzel, Jeremy Bolger, Thomas Brown, Feng Luan, Dong-II Yeom
  • Patent number: 7110646
    Abstract: A tunable optical fiber device comprises a length of fiber having a core having a certain refractive index; a cladding peripherally surrounding the core with a refractive index less than the refractive index of the core; and at least one hollow region disposed within the cladding in proximity to the core or within the core itself. Fluid (typically liquid) controllably moved within the hollow region modifies the effective index of the fiber and thereby tunes its characteristics.
    Type: Grant
    Filed: March 8, 2002
    Date of Patent: September 19, 2006
    Assignees: Lucent Technologies Inc., Fitel USA Corp.
    Inventors: Benjamin John Eggleton, Charles Kerbage, Peter Mach, John A. Rogers, Robert Scott Windeler
  • Patent number: 7079777
    Abstract: In accordance with the invention, an optical fiber communication system is provided with a tunable linearly chirped Bragg grating in high birefringence fiber for reduction of polarization mode dispersion without increasing chromatic dispersion. A first embodiment using a single grating can be tuned for optimal PMD compensation, optimal chromatic compensation or optimal simultaneous compensation. Alternative embodiments using a plurality of gratings permit simultaneous compensation of both PMD and chromatic dispersion.
    Type: Grant
    Filed: April 24, 2002
    Date of Patent: July 18, 2006
    Assignee: Lucent Technologies Inc.
    Inventors: Matthias Berger, Benjamin John Eggleton, Herbert Haunstein, Andreas Munk, Paul Stephen Westbrook
  • Patent number: 6940889
    Abstract: In accordance with the invention, a modulated RZ pulse source comprises a modulated light source optically coupled to a stabilized Bragg grating filter and one or more optical taps. The light source is preferably modulated in power and frequency and has an adjustable channel wavelength ?. The Bragg grating filter has a reflectivity bandwidth having a high slope reflectivity cutoff and is preferably tunable. A feedback arrangement responsive to the taps keeps the source channel wavelength ? on the edge of the reflectivity bandwidth for shaping RZ pulses. When the Bragg grating is stabilized, the feedback system maintains ? at a value linked to the grating reflectivity edge and, by overlapping at least part of the optical spectrum of the source, converts the modulated source light into RZ pulses with high extinction ratio (?12 dB). The result is a high power, jitter-free RZ pulse source that is compact, inexpensive and power efficient.
    Type: Grant
    Filed: February 26, 2002
    Date of Patent: September 6, 2005
    Assignee: Lucent Technologies Inc.
    Inventors: Benjamin John Eggleton, Daniel Mahgerefteh, Paul Steinvurzel, Paul Stephen Westbrook
  • Publication number: 20040208620
    Abstract: In accordance with the invention, an optical fiber communication system is provided with a tunable linearly chirped Bragg grating in high birefringence fiber for reduction of polarization mode dispersion without increasing chromatic dispersion. A first embodiment using a single grating can be tuned for optimal PMD compensation, optimal chromatic compensation or optimal simultaneous compensation. Alternative embodiments using a plurality of gratings permit simultaneous compensation of both PMD and chromatic dispersion.
    Type: Application
    Filed: April 24, 2002
    Publication date: October 21, 2004
    Applicant: Lucent Technologies Inc.
    Inventors: Matthias Berger, Benjamin John Eggleton, Herbert Haunstein, Andreas Munk, Paul Stephen Westbrook
  • Patent number: 6807338
    Abstract: A multi-wavelength cascaded Raman resonator (“MWCRR”). The MWCRR has an optical source for pumping optical radiation centered around an input wavelength. The MWCRR further includes a Raman fiber having at least a first set of optical gratings for converting the pumped optical radiation to wavelengths other than the input wavelength. The Raman fiber also has at least one adjustable output coupler having a variable reflectivity for controlling the power of the optical radiation propagating from the at least one set of optical gratings at the wavelengths other than the input wavelength.
    Type: Grant
    Filed: September 27, 2001
    Date of Patent: October 19, 2004
    Assignee: Fitel USA Corp.
    Inventors: Jean-Christophe Bouteiller, Benjamin John Eggleton, Clifford Headley, Paul Steinvurzel
  • Patent number: 6782148
    Abstract: Embodiments of the invention include an optical fiber device such as a tunable birefringent optical fiber having a core region, a cladding layer therearound, and a controllable active material disposed in, e.g., selective capillaries or pockets formed in the cladding layer. The active materials include, e.g., electro-optic material, magneto-optic material, photorefractive material, thermo-optic material and/or materials such as laser dyes that provide tunable gain or loss. The application of, e.g., temperature, light or an electric or magnetic field varies optical properties of the active material, which, in turn, varies or affects the propagation properties of optical signals in the device. The optical device can include a tapered region or long period grating that causes the core mode to spread or couple into the cladding region and, simultaneously, allows the active material to be relatively close to the propagated modes, thus allowing interaction between the active material and the propagating modes.
    Type: Grant
    Filed: March 15, 2002
    Date of Patent: August 24, 2004
    Assignee: Fitel USA Corp.
    Inventors: Benjamin John Eggleton, Charles Kerbage
  • Patent number: 6778734
    Abstract: A thermally tunable optical fiber device comprises a length of optical fiber including a device disposed within a microcapillary heater. The microcapillary heater can include a thin film resistive heater. The fiber itself can optionally include a thin film resistive heater overlying the device, and a plurality of nested microcapillary tubes can optionally provide a plurality of successive concentric heaters overlying the device. The heaters films can be films with uniform, tapered or periodically varying thickness. The heaters can be single layer or multiple layer. Multiple layer films can be superimposed with intervening insulating layers or plural layers can be formed on different angular regions of the microcapillary. Thus one can provide virtually any desired temperature versus length profile along the fiber device.
    Type: Grant
    Filed: January 15, 2002
    Date of Patent: August 17, 2004
    Assignee: Lucent Technologies Inc.
    Inventors: Kirk William Baldwin, Benjamin John Eggleton, Kenneth Stephen Feder, Robert A. Macharrie, John A. Rogers, Paul Steinvurzel, Jon Engelberth, Rajan Deshmukh
  • Patent number: 6658183
    Abstract: The invention involves providing a microstructured fiber having a core region, a cladding region, and one or more axially oriented elements (e.g., capillary air holes) in the cladding region. A portion of the microstructured fiber is then treated, e.g., by heating and stretching the fiber, such that at least one feature of the fiber microstructure is modified along the propagation direction, e.g., the outer diameter of the fiber gets smaller, the axially oriented elements get smaller, or the axially oriented elements collapse. The treatment is selected to provide a resultant fiber length that exhibits particular properties, e.g., mode contraction leading to soliton generation, or mode expansion. Advantageously, the overall fiber length is designed to readily couple to a standard transmission fiber, i.e., the core sizes at the ends of the length are similar to a standard fiber, which allows efficient coupling of light into the microstructured fiber length.
    Type: Grant
    Filed: October 20, 2000
    Date of Patent: December 2, 2003
    Assignee: Lucent Technologies Inc.
    Inventors: Juhi Chandalia, David John DiGiovanni, Benjamin John Eggleton, Sandra Greenberg Kosinski, Xiang Liu, Robert Scott Windeler, Chunhui Xu
  • Patent number: 6654522
    Abstract: The invention involves providing a microstructured fiber having a core region, a cladding region, and one or more axially oriented elements (e.g., capillary air holes) in the cladding region. A portion of the microstructured fiber is then treated, e.g., by heating and stretching the fiber, such that at least one feature of the fiber microstructure is modified along the propagation direction, e.g., the outer diameter of the fiber gets smaller, the axially oriented elements get smaller, or the axially oriented elements collapse. The treatment is selected to provide a resultant fiber length that exhibits particular properties, e.g., mode contraction leading to soliton generation, or mode expansion. Advantageously, the overall fiber length is designed to readily couple to a standard transmission fiber, i.e., the core sizes at the ends of the length are similar to a standard fiber, which allows efficient coupling of light into the microstructured fiber length.
    Type: Grant
    Filed: April 23, 2002
    Date of Patent: November 25, 2003
    Assignee: Lucent Technologies Inc.
    Inventors: Juhi Chandalia, David John DiGiovanni, Benjamin John Eggleton, Sandra Greenberg Kosinski, Robert Scott Windeler
  • Publication number: 20030174985
    Abstract: Embodiments of the invention include an optical fiber device such as a tunable birefringent optical fiber having a core region, a cladding layer therearound, and a controllable active material disposed in, e.g., selective capillaries or pockets formed in the cladding layer. The active materials include, e.g., electro-optic material, magneto-optic material, photorefractive material, thermo-optic material and/or materials such as laser dyes that provide tunable gain or loss. The application of, e.g., temperature, light or an electric or magnetic field varies optical properties of the active material, which, in turn, varies or affects the propagation properties of optical signals in the device. The optical device can include a tapered region or long period grating that causes the core mode to spread or couple into the cladding region and, simultaneously, allows the active material to be relatively close to the propagated modes, thus allowing interaction between the active material and the propagating modes.
    Type: Application
    Filed: March 15, 2002
    Publication date: September 18, 2003
    Inventors: Benjamin John Eggleton, Charles Kerbage
  • Publication number: 20030169987
    Abstract: A tunable optical fiber device comprises a length of fiber having a core having a certain refractive index; a cladding peripherally surrounding the core with a refractive index less than the refractive index of the core; and at least one hollow region disposed within the cladding in proximity to the core or within the core itself. Fluid (typically liquid) controllably moved within the hollow region modifies the effective index of the fiber and thereby tunes its characteristics.
    Type: Application
    Filed: March 8, 2002
    Publication date: September 11, 2003
    Applicant: Lucent Technologies Inc.
    Inventors: Benjamin John Eggleton, Charles Kerbage, Peter Mach, John A. Rogers, Robert Scott Windeler
  • Patent number: 6608952
    Abstract: Embodiments of the invention include an optical fiber device such as a modulator, variable attenuator or tunable filter including an optical fiber having a core region, a cladding layer around the core region, and a controllable active material disposed in, e.g., capillaries or rings formed the cladding layer. The active materials include, e.g., electro-optic material, magneto-optic material, photorefractive material, thermo-optic material and/or materials such as laser dyes that provide tunable gain or loss. The application of, e.g., temperature, light or an electric or magnetic field varies optical properties of the active material, which, in turn, varies or affects the propagation properties of optical signals in the device. The optical device includes a tapered region that causes the core mode to spread into the cladding region and, simultaneously, allows the active material to be relatively close to the propagated modes, thus allowing interaction between the active material and the propagating modes.
    Type: Grant
    Filed: August 15, 2001
    Date of Patent: August 19, 2003
    Assignee: Fitel USA Corp.
    Inventors: Benjamin John Eggleton, Arturo Hale, Charles Kerbage, Robert Scott Windeler