Patents by Inventor Benjamin L. Koopman

Benjamin L. Koopman has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11439980
    Abstract: A visible light photocatalyst coating includes a metal oxide that in the presence of a organic contaminate that absorbs at least some visible light or includes the metal oxide and an auxiliary visible light absorbent, where upon absorption of degradation of the organic contaminate occurs. Contaminates can be microbes, such as bacteria, viruses, or fungi. The metal oxide is nanoparticulate or microparticulate. The metal oxide can be TiO2. The coating can include an auxiliary dye having an absorbance of light in at least a portion of the visible spectrum. The coating can include a suspending agent, such as NaOH. The visible light photocatalyst coating can cover a surface of a device that is commonly handled or touched, such as a door knob, rail, or counter.
    Type: Grant
    Filed: July 31, 2017
    Date of Patent: September 13, 2022
    Assignee: UNIVERSITY OF FLORIDA RESEARCH FOUNDATION, INCORPORATED
    Inventors: Brij M. Moudgil, Vijay Krishna, Benjamin L. Koopman, Wei Bai
  • Publication number: 20210060531
    Abstract: A visible light photocatalyst coating includes a metal oxide that in the presence of a organic contaminate that absorbs at least some visible light or includes the metal oxide and an auxiliary visible light absorbent, where upon absorption of degradation of the organic contaminate occurs. Contaminates can be microbes, such as bacteria, viruses, or fungi. The metal oxide is nanoparticulate or microparticulate. The metal oxide can be TiO2. The coating can include an auxiliary dye having an absorbance of light in at least a portion of the visible spectrum. The coating can include a suspending agent, such as NaOH. The visible light photocatalyst coating can cover a surface of a device that is commonly handled or touched, such as a door knob, rail, or counter.
    Type: Application
    Filed: July 31, 2017
    Publication date: March 4, 2021
    Inventors: BRIJ M. MOUDGIL, VIJAY KRISHNA, BENJAMIN L. KOOPMAN, WEI BAI
  • Patent number: 9950977
    Abstract: Polyhydroxyfullerenes (PHFs) having enhanced electron scavenging capabilities have a ratio of non-hydroxyl functional groups to hydroxyl functional groups that is less than or equal to 0.3. When combined with a semiconductor photocatalyst, such as titanium dioxide nanoparticles, the PHFs provide a photocatalyst for degradation of chemical and biological contaminates with an efficiency of at least twice that of titanium dioxide nanoparticles free of PHFs. The PHFs are included in these catalysts at a weight ratio to titanium dioxide of about 0.001 to about 0.003, whereas significantly lower and higher ratios do not achieve the highly improved photodegradation capability. PHFs outside of the desired structure are shown to be of little value for photodegradation, and can be inhibiting to the photocatalytic activity of TiO2. The enhanced electron scavenging PHFs can be employed as a component of materials for solar cells, field effect transistors, and radical scavengers.
    Type: Grant
    Filed: June 22, 2015
    Date of Patent: April 24, 2018
    Assignee: UNIVERSITY OF FLORIDA RESEARCH FOUNDATION, INC.
    Inventors: Vijay Krishna, Brij M. Moudgil, Benjamin L. Koopman
  • Patent number: 9731013
    Abstract: An electromagnetic radiation activated device comprises a property changing material and at least one functionalized fullerene that upon irradiation of the functionalized fullerenes with electromagnetic radiation of one or more frequencies a thermally activated chemical or physical transformation occurs in the property changing material. The thermal activated transformation of the property changing material is triggered by the heating or combustion of the functionalized fullerenes upon their irradiation. The device can include a chemical agent that is embedded in the property changing material and is released when the material is heated by the functionalized fullerenes upon irradiation.
    Type: Grant
    Filed: March 24, 2015
    Date of Patent: August 15, 2017
    Assignee: UNIVERSITY OF FLORIDA RESEARCH FOUNDATION, INC.
    Inventors: Vijay Krishna, Karl R. Zawoy, Brij M. Moudgil, Benjamin L. Koopman, Nathanael Ian Stevens, Kevin William Powers
  • Publication number: 20170087374
    Abstract: A method of irradiating a target region containing at least one fullerene comprising molecule promotes the heating or combustion of the target region. The heating method can be employed in a variety of applications including: selective targeting and destruction of cancer cells, detonation of explosives, ignition of a combustible mixture, photolithographic processes, and writing of optical storage media.
    Type: Application
    Filed: October 21, 2016
    Publication date: March 30, 2017
    Inventors: Vijay Krishna, Brij M. Moudgil, Benjamin L. Koopman
  • Patent number: 9399756
    Abstract: Methods of stimulating an increase in biomass by stimulating the growth, lifespan and/or reproduction of organisms such as fungi, algae, plants, and other aquatic organisms are provided by applying an effective amount of functionalized fullerenes. For example, polyhydroxy fullerenes are effective at low levels of promoting the increase in biomass.
    Type: Grant
    Filed: April 7, 2011
    Date of Patent: July 26, 2016
    Assignee: UNIVERSITY OF FLORIDA RESEARCH FOUNDATION, INC.
    Inventors: Jie Gao, Vijay Krishna, Wei Bai, Benjamin L. Koopman, Brij M. Moudgil, Paul Anthony Indeglia, Kevin Michael Folta, Angelina Tsenova Georgieva
  • Patent number: 9314027
    Abstract: Functionalized fullerenes are used in a method of combating fungal growth on surfaces and treating fungal diseases of patients. Surfaces that can be treated by the materials comprising an effective amount of functionalized fullerenes include those of fruits, vegetables, harvested grains, plants, or plant seeds. The method of combating fungal growth on a surface can be augmented but is not dependent on irradiation of the surface by light. Functional fullerenes are employed in various dosage forms such as topical, ingestible or administration.
    Type: Grant
    Filed: April 1, 2010
    Date of Patent: April 19, 2016
    Assignee: UNIVERSITY OF FLORIDA RESEARCH FOUNDATION, INC.
    Inventors: Vijay Krishna, Brij M. Moudgil, Benjamin L. Koopman
  • Publication number: 20150284309
    Abstract: Polyhydroxyfullerenes (PHFs) having enhanced electron scavenging capabilities have a ratio of non-hydroxyl functional groups to hydroxyl functional groups that is less than or equal to 0.3. When combined with a semiconductor photocatalyst, such as titanium dioxide nanoparticles, the PHFs provide a photocatalyst for degradation of chemical and biological contaminates with an efficiency of at least twice that of titanium dioxide nanoparticles free of PHFs. The PHFs are included in these catalysts at a weight ratio to titanium dioxide of about 0.001 to about 0.003, whereas significantly lower and higher ratios do not achieve the highly improved photodegradation capability. PHFs outside of the desired structure are shown to be of little value for photodegradation, and can be inhibiting to the photocatalytic activity of TiO2. The enhanced electron scavenging PHFs can be employed as a component of materials for solar cells, field effect transistors, and radical scavengers.
    Type: Application
    Filed: June 22, 2015
    Publication date: October 8, 2015
    Inventors: VIJAY KRISHNA, BRIJ M. MOUDGIL, BENJAMIN L. KOOPMAN
  • Patent number: 9084989
    Abstract: Polyhydroxyfullerenes (PHFs) having enhanced electron scavenging capabilities have a ratio of non-hydroxyl functional groups to hydroxyl functional groups that is less than or equal to 0.3. When combined with a semiconductor photocatalyst, such as titanium dioxide nanoparticles, the PHFs provide a photocatalyst for degradation of chemical and biological contaminates with an efficiency of at least twice that of titanium dioxide nanoparticles free of PHFs. The PRFs are included in these catalysts at a weight ratio to titanium dioxide of about 0.001 to about 0.003, whereas significantly lower and higher ratios do not achieve the highly improved photodegradation capability. PHFs outside of the desired structure are shown to be of little value for photodegradation, and can be inhibiting to the photocatalytic activity of TiO2. The enhanced electron scavenging PHFs can be employed as a component of materials for solar cells, field effect transistors, and radical scavengers.
    Type: Grant
    Filed: June 24, 2009
    Date of Patent: July 21, 2015
    Assignee: UNIVERSITY OF FLORIDA RESEARCH FOUNDATION, INC.
    Inventors: Vijay Krishna, Brij M. Moudgil, Benjamin L. Koopman
  • Publication number: 20150190508
    Abstract: An electromagnetic radiation activated device comprises a property changing material and at least one functionalized fullerene that upon irradiation of the functionalized fullerenes with electromagnetic radiation of one or more frequencies a thermally activated chemical or physical transformation occurs in the property changing material. The thermal activated transformation of the property changing material is triggered by the heating or combustion of the functionalized fullerenes upon their irradiation. The device can include a chemical agent that is embedded in the property changing material and is released when the material is heated by the functionalized fullerenes upon irradiation.
    Type: Application
    Filed: March 24, 2015
    Publication date: July 9, 2015
    Inventors: VIJAY KRISHNA, KARL R. ZAWOY, BRIJ M. MOUDGIL, BENJAMIN L. KOOPMAN, NATHANAEL IAN STEVENS, KEVIN WILLIAM POWERS
  • Patent number: 9011309
    Abstract: An electromagnetic radiation activated device comprises a property changing material and at least one functionalized fullerene that upon irradiation of the functionalized fullerenes with electromagnetic radiation of one or more frequencies a thermally activated chemical or physical transformation occurs in the property changing material. The thermal activated transformation of the property changing material is triggered by the heating or combustion of the functionalized fullerenes upon their irradiation. The device can include a chemical agent that is embedded in the property changing material and is released when the material is heated by the functionalized fullerenes upon irradiation.
    Type: Grant
    Filed: May 12, 2011
    Date of Patent: April 21, 2015
    Assignee: University of Florida Research Foundation, Inc.
    Inventors: Vijay Krishna, Karl Zawoy, Brij M. Moudgil, Benjamin L. Koopman, Nathanael Ian Stevens, Kevin William Powers
  • Patent number: 8986516
    Abstract: A method to release hydrogen from a material comprising hydrogen fixed fullerenes involves irradiating the hydrogen fixed fullerenes with electromagnetic radiation of sufficient intensity to release hydrogen rapidly upon irradiation. The intensity of the irradiation and/or the area of irradiation can be adjusted to control the rate and extent of hydrogen release. The hydrogen depleted material comprising hydrogen fixed fullerene can be hydrogenated to regenerate the material.
    Type: Grant
    Filed: January 5, 2009
    Date of Patent: March 24, 2015
    Assignee: University of Florida Research Foundation, Inc.
    Inventors: Vijay Krishna, Brij M. Moudgil, Benjamin L. Koopman
  • Patent number: 8974644
    Abstract: Electromagnetic irradiation of functionalized fullerenes in an oxygen-free environment induces conversion of the functionalized fullerenes to carbon nanotubes, carbon nanohorns, carbon onions, diamonds and/or carbon schwarzites. The carbon nanotubes can be multi-wall carbon nanotubes. Advantageously, the subject invention can be used for in-situ synthesis of carbon nanostructures within a matrix to form a carbon nanostructure composite, where positioning of the carbon nanostructures is controlled by the manner of dispersion of the functionalized fullerenes in the matrix. Carbon nanotube comprising features, such as electrical connects, can be formed on a surface by irradiating a portion of a functionalized fullerene coating with a laser beam.
    Type: Grant
    Filed: April 2, 2014
    Date of Patent: March 10, 2015
    Assignee: University of Florida Research Foundation, Inc.
    Inventors: Vijay Krishna, Brij M. Moudgil, Benjamin L. Koopman
  • Patent number: 8883124
    Abstract: Fullerenes, when irradiated with electromagnetic radiation, generate acoustic waves. A photoacoustic tomography method using a material comprising fullerenes is disclosed that includes irradiating the material with a radiation beam such as a laser. The resultant photoacoustic effect produced by the material is detected by at least one detector. A photoacoustic tomography system using a material comprising fullerenes is also described.
    Type: Grant
    Filed: October 31, 2008
    Date of Patent: November 11, 2014
    Assignee: University of Florida Research Foundation, Inc.
    Inventors: Vijay Krishna, Brij M. Moudgil, Benjamin L. Koopman, Stephen Grobmyer, Iwakuma Nobutaka, Qiang Wang, Qizhi Zhang, Huabei Jiang, Parvesh Sharma, Amit Kumar Singh
  • Publication number: 20140224642
    Abstract: Electromagnetic irradiation of functionalized fullerenes in an oxygen-free environment induces conversion of the functionalized fullerenes to carbon nanotubes, carbon nanohorns, carbon onions, diamonds and/or carbon schwarzites. The carbon nanotubes can be multi-wall carbon nanotubes. Advantageously, the subject invention can be used for in-situ synthesis of carbon nanostructures within a matrix to form a carbon nanostructure composite, where positioning of the carbon nanostructures is controlled by the manner of dispersion of the functionalized fullerenes in the matrix. Carbon nanotube comprising features, such as electrical connects, can be formed on a surface by irradiating a portion of a functionalized fullerene coating with a laser beam.
    Type: Application
    Filed: April 2, 2014
    Publication date: August 14, 2014
    Applicant: UNIVERSITY OF FLORIDA RESEARCH FOUNDATION, INC.
    Inventors: VIJAY KRISHNA, BRIJ M. MOUDGIL, BENJAMIN L. KOOPMAN
  • Patent number: 8709217
    Abstract: Electromagnetic irradiation of functionalized fullerenes in an oxygen-free environment induces conversion of the functionalized fullerenes to carbon nanotubes, carbon nanohorns, carbon onions, diamonds and/or carbon schwarzites. The carbon nanotubes can be multi-wall carbon nanotubes. Advantageously, the subject invention can be used for in-situ synthesis of carbon nanostructures within a matrix to form a carbon nanostructure composite, where positioning of the carbon nanostructures is controlled by the manner of dispersion of the functionalized fullerenes in the matrix. Carbon nanotube comprising features, such as electrical connects, can be formed on a surface by irradiating a portion of a functionalized fullerene coating with a laser beam.
    Type: Grant
    Filed: November 9, 2009
    Date of Patent: April 29, 2014
    Assignee: University of Florida Research Foundation, Inc.
    Inventors: Vijay Krishna, Brij M. Moudgil, Benjamin L. Koopman
  • Patent number: 8373139
    Abstract: Functionalized fullerenes, when excited at any of a broad range of wavelengths in an oxygen free environment, undergo luminescence. The oxygen sensitive luminescence of functionalized fullerenes is used for numerous applications including oxygen detection; irradiation induced healing of polymeric materials; and phosphors for optical location and display applications. The degradation of the functionalized fullerenes allows for the detection of oxygen by diminished luminescence when the fullerenes are exposed to an irradiation source, such as a laser beam, in the presence of oxygen. The luminescence from a portion of a surface of a material with functionalized fullerenes allows for the location of the surface containing a functionalized fullerene target in the absence of oxygen or to heat the object in the area irradiated that is exposed to oxygen. The localized heating can be used to repair defects to a material containing the functionalized fullerenes.
    Type: Grant
    Filed: January 5, 2009
    Date of Patent: February 12, 2013
    Assignee: University of Florida Research Foundation, Inc.
    Inventors: Vijay Krishna, Brij M. Moudgil, Benjamin L. Koopman
  • Publication number: 20130035398
    Abstract: Methods of stimulating an increase in biomass by stimulating the growth, lifespan and/or reproduction of organisms such as fungi, algae, plants, and other aquatic organisms are provided by applying an effective amount of functionalized fullerenes. For example, polyhydroxy fullerenes are effective at low levels of promoting the increase in biomass.
    Type: Application
    Filed: April 7, 2011
    Publication date: February 7, 2013
    Applicant: UNIVERSITY OF FLORIDA RESEARCH FOUNDATION, INC.
    Inventors: Jie Gao, Vijay Krishna, Wei Bai, Benjamin L. Koopman, Brij M. Moudgil, Paul Anthony Indeglia, Kevin Michael Folta, Angelina Tsenova Georgieva
  • Publication number: 20120123182
    Abstract: An electromagnetic radiation activated device comprises a property changing material and at least one functionalized fullerene that upon irradiation of the functionalized fullerenes with electromagnetic radiation of one or more frequencies a thermally activated chemical or physical transformation occurs in the property changing material. The thermal activated transformation of the property changing material is triggered by the heating or combustion of the functionalized fullerenes upon their irradiation. The device can include a chemical agent that is embedded in the property changing material and is released when the material is heated by the functionalized fullerenes upon irradiation.
    Type: Application
    Filed: May 12, 2011
    Publication date: May 17, 2012
    Applicant: UNIVERSITY OF FLORIDA RESEARCH FOUNDATION. INC.
    Inventors: VIJAY KRISHNA, Karl Zawoy, Brij M. Moudgil, Benjamin L. Koopman, Nathanael Ian Stevens, Kevin William Powers
  • Patent number: 8105754
    Abstract: A method for electron beam nanolithography without the need for development step involves depositing a film of a resist comprising functionalized fullerenes on a substrate, and writing features by exposure to an electron beam with an accelerating voltage and dose rate sufficient to promote heating or thermal degradation of the functionalized fullerene in the irradiated volume such that a pattern is generated without a subsequent development step or with an aqueous developer. Lithographic features of about 1 nm or greater can be formed.
    Type: Grant
    Filed: January 5, 2009
    Date of Patent: January 31, 2012
    Assignee: University of Florida Research Foundation, Inc.
    Inventors: Amit Kumar Singh, Vijay Krishna, Brij M. Moudgil, Benjamin L. Koopman