Patents by Inventor Benjamin Oakes

Benjamin Oakes has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12163125
    Abstract: Provided herein are engineered Class 2, Type V nucleases and guide RNAs useful for the editing of target nucleic acids. Also provided are methods of making and using such variants to modify nucleic acids.
    Type: Grant
    Filed: January 10, 2022
    Date of Patent: December 10, 2024
    Assignee: Scribe Therapeutics Inc.
    Inventors: Gayathri Vijayakumar, Sean Higgins, Isabel Colin, Sarah Denny, Brett T. Staahl, Benjamin Oakes, Angus Sidore, Suraj Makhija
  • Patent number: 12084692
    Abstract: Provided herein are reference guide nucleic acid scaffolds and variants of reference guide nucleic acid scaffolds capable of binding one or more engineered proteins comprising a RuvC cleavage domain. In some embodiments, the variants of the reference guide nucleic acid scaffolds comprise at least one modification compared to the reference guide nucleic acid scaffold sequences and exhibit one or more improved characteristics compared to the reference guide nucleic acid scaffolds.
    Type: Grant
    Filed: November 22, 2022
    Date of Patent: September 10, 2024
    Assignee: Scribe Therapeutics Inc.
    Inventors: Benjamin Oakes, Sean Higgins, Hannah Spinner, Sarah Denny, Brett T. Staahl, Kian Taylor, Katherine Baney, Isabel Colin, Maroof Adil
  • Patent number: 11976277
    Abstract: Provided herein are delivery particle systems (XDP) useful for the delivery of payloads of any type. In some embodiments, a XDP particle system with tropism for target cells of interest is used to deliver CRISPR/Cas polypeptides (e.g., CasX proteins) and guide nucleic acids (gNA), for the modification of nucleic acids in target cells. Also provided are methods of making and using such XDP to modify the nucleic acids in such cells.
    Type: Grant
    Filed: February 3, 2023
    Date of Patent: May 7, 2024
    Assignee: Scribe Therapeutics Inc.
    Inventors: Jason Fernandes, Sean Higgins, Isabel Colin, Hannah Spinner, Matthew Gardner, Trent Gomberg, Gayathri Vijayakumar, Sarah Denny, Brett T. Staahl, Maroof Adil, Benjamin Oakes, Angus Sidore, Suraj Makhija
  • Patent number: 11613742
    Abstract: Provided herein are CasX:gNA systems comprising CasX polypeptides, guide nucleic acids (gNA), and optionally donor template nucleic acids useful in the modification of a SOD1 gene. The systems are also useful for introduction into cells, for example eukaryotic cells having mutations in the SOD1 protein or the SOD1 regulatory element. Also provided are methods of using such CasX:gNA systems to modify cells having such mutations and utility in methods of treatment of a subject with a SOD1-related disease.
    Type: Grant
    Filed: September 23, 2021
    Date of Patent: March 28, 2023
    Assignee: SCRIBE THERAPEUTICS INC.
    Inventors: Benjamin Oakes, Sean Higgins, Hannah Spinner, Sarah Denny, Brett T. Staahl, Kian Taylor, Katherine Baney, Isabel Colin, Maroof Adil, Cole Urnes
  • Patent number: 11560555
    Abstract: Provided herein are engineered proteins comprising a RuvC DNA cleavage domain comprising one or more amino acid modifications, and one or more improved characteristics, relative to a naturally occurring RuvC domain. Also provided are gene editing systems comprising engineered proteins, and methods for use thereof.
    Type: Grant
    Filed: November 23, 2021
    Date of Patent: January 24, 2023
    Assignee: Scribe Therapeutics Inc.
    Inventors: Benjamin Oakes, Sean Higgins, Hannah Spinner, Sarah Denny, Brett T. Staahl, Kian Taylor, Katherine Baney, Isabel Colin, Maroof Adil
  • Patent number: 11535835
    Abstract: Provided herein are Class 2 Type V CRISPR:gNA systems comprising Class 2 Type V CRISPR polypeptides (e.g. CasX), guide nucleic acids (gNA), and optionally donor template nucleic acids useful in the modification of a RHO gene. The systems are also useful for introduction into cells, for example eukaryotic cells having mutations in the rhodopsin protein. Also provided are methods of using such systems to modify cells having such mutations and utility in methods of treatment of a subject with a RHO-related disease, such as retinitis pigmentosa.
    Type: Grant
    Filed: September 23, 2021
    Date of Patent: December 27, 2022
    Assignee: Scribe Therapeutics Inc.
    Inventors: Benjamin Oakes, Hannah Spinner, Sarah Denny, Brett T. Staahl, Kian Taylor, Katherine Baney, Isabel Colin, Maroof Adil, Cole Urnes, Sean Higgins
  • Patent number: 11008555
    Abstract: The present disclosure provides variant Cas9 polypeptides, where a variant Cas9 polypeptide of the present disclosure comprises an internal insertion of a heterologous polypeptide. The present disclosure provides nucleic acids comprising nucleotide sequences encoding the variant Cas9 polypeptides. The present disclosure provides host cells comprising a variant Cas9 polypeptide of the present disclosure, or comprising a nucleic acid encoding a variant Cas9 polypeptide of the present disclosure. The present disclosure provides methods of binding and/or modifying a target nucleic acid, involving use of a variant Cas9 polypeptide of the present disclosure.
    Type: Grant
    Filed: September 15, 2016
    Date of Patent: May 18, 2021
    Assignee: The Regents of the University of California
    Inventors: Benjamin Oakes, David Savage, Dana Nadler, Abraham I. Flamholz, Jennifer A. Doudna
  • Publication number: 20200199552
    Abstract: The present disclosure provides variant Cas9 polypeptides, where a variant Cas9 polypeptide of the present disclosure comprises an internal insertion of a heterologous polypeptide. The present disclosure provides nucleic acids comprising nucleotide sequences encoding the variant Cas9 polypeptides. The present disclosure provides host cells comprising a variant Cas9 polypeptide of the present disclosure, or comprising a nucleic acid encoding a variant Cas9 polypeptide of the present disclosure. The present disclosure provides methods of binding and/or modifying a target nucleic acid, involving use of a variant Cas9 polypeptide of the present disclosure.
    Type: Application
    Filed: September 15, 2016
    Publication date: June 25, 2020
    Applicant: The Regents of the University of California
    Inventors: Benjamin Oakes, David Savage, Dana Nadler, Abraham I. Flamholz, Jennifer A. Doudna
  • Publication number: 20200087642
    Abstract: The present disclosure provides compositions and methods for binding and/or cleaving a single stranded target nucleic acid. Subject compositions include a Cas9 polypeptide, a guide nucleic acid, and a PAMmer. A subject PAMmer is a single stranded oligonucleotide having a proto spacer adjacent motif (PAM) sequence and at least one of: a specificity segment positioned 5? of the PAM sequence, and an orientation segment positioned 3? of the PAM sequence. In some embodiments, the Cas9 polypeptide is a variant Cas9 polypeptide having reduced nuclease activity relative to a corresponding wild type Cas9 polypeptide. In some cases, methods of binding are for visualizing single stranded target nucleic acids using a detectable label. In some cases, methods of binding are for isolating, collecting, and/or analyzing at least one of: (i) bound single stranded target nucleic acids; and (ii) polypeptides associated with bound single stranded target nucleic acids.
    Type: Application
    Filed: November 27, 2019
    Publication date: March 19, 2020
    Inventors: Jennifer A. Doudna, Samuel H. Sternberg, Mitchell O'Connell, Benjamin Oakes
  • Patent number: 10494620
    Abstract: The present disclosure provides compositions and methods for binding and/or cleaving a single stranded target nucleic acid. Subject compositions include a Cas9 polypeptide, a guide nucleic acid, and a PAMmer. A subject PAMmer is a single stranded oligonucleotide having a protospacer adjacent motif (PAM) sequence and at least one of: a specifity segment positioned 5? of the PAM sequence, and an orientation segment positioned 3? of the PAM sequence. In some embodiments, the Cas9 polypeptide is a variant Cas9 polypeptide having reduced nuclease activity relative to a corresponding wild type Cas9 polypeptide. In some cases, methods of binding are for visualizing single stranded target nucleic acids using a detectable label. In some cases, methods of binding are for isolating, collecting, and/or analyzing at least one of: (i) bound single stranded target nucleic acids; and (ii) polypeptides associated with bound single stranded target nucleic acids.
    Type: Grant
    Filed: June 7, 2018
    Date of Patent: December 3, 2019
    Assignee: The Regents of the University of California
    Inventors: Jennifer A. Doudna, Samuel H. Sternberg, Mitchell O'Connell, Benjamin Oakes
  • Publication number: 20180273922
    Abstract: The present disclosure provides compositions and methods for binding and/or cleaving a single stranded target nucleic acid. Subject compositions include a Cas9 polypeptide, a guide nucleic acid, and a PAMmer. A subject PAMmer is a single stranded oligonucleotide having a proto spacer adjacent motif (PAM) sequence and at least one of: a specifity segment positioned 5? of the PAM sequence, and an orientation segment positioned 3? of the PAM sequence. In some embodiments, the Cas9 polypeptide is a variant Cas9 polypeptide having reduced nuclease activity relative to a corresponding wild type Cas9 polypeptide. In some cases, methods of binding are for visualizing single stranded target nucleic acids using a detectable label. In some cases, methods of binding are for isolating, collecting, and/or analyzing at least one of: (i) bound single stranded target nucleic acids; and (ii) polypeptides associated with bound single stranded target nucleic acids.
    Type: Application
    Filed: June 7, 2018
    Publication date: September 27, 2018
    Inventors: Jennifer A. Doudna, Samuel H. Sternberg, Mitchell O'Connell, Benjamin Oakes
  • Patent number: 9994831
    Abstract: The present disclosure provides compositions and methods for binding and/or cleaving a single stranded target nucleic acid. Subject compositions include a Cas9 polypeptide, a guide nucleic acid, and a PAMmer. A subject PAMmer is a single stranded oligonucleotide having a protospacer adjacent motif (PAM) sequence and at least one of: a specifity segment positioned 5? of the PAM sequence, and an orientation segment positioned 3? of the PAM sequence. In some embodiments, the Cas9 polypeptide is a variant Cas9 polypeptide having reduced nuclease activity relative to a corresponding wild type Cas9 polypeptide. In some cases, methods of binding are for visualizing single stranded target nucleic acids using a detectable label. In some cases, methods of binding are for isolating, collecting, and/or analyzing at least one of: (i) bound single stranded target nucleic acids; and (ii) polypeptides associated with bound single stranded target nucleic acids.
    Type: Grant
    Filed: December 11, 2014
    Date of Patent: June 12, 2018
    Assignee: The Regents of the University of California
    Inventors: Jennifer A. Doudna, Samuel H. Sternberg, Mitchell O'Connell, Benjamin Oakes
  • Publication number: 20160289659
    Abstract: The present disclosure provides compositions and methods for binding and/or cleaving a single stranded target nucleic acid. Subject compositions include a Cas9 polypeptide, a guide nucleic acid, and a PAMmer. A subject PAMmer is a single stranded oligonucleotide having a protospacer adjacent motif (PAM) sequence and at least one of: a specificity segment positioned 5? of the PAM sequence, and an orientation segment positioned 3? of the PAM sequence. In some embodiments, the Cas9 polypeptide is a variant Cas9 polypeptide having reduced nuclease activity relative to a corresponding wild type Cas9 polypeptide. In some cases, methods of binding are for visualizing single stranded target nucleic acids using a detectable label. In some cases, methods of binding are for isolating, collecting, and/or analyzing at least one of: (i) bound single stranded target nucleic acids; and (ii) polypeptides associated with bound single stranded target nucleic acids.
    Type: Application
    Filed: December 11, 2014
    Publication date: October 6, 2016
    Inventors: Jennifer A. Doudna, Samuel H. Sternberg, Mitchell O'Connell, Benjamin Oakes