Patents by Inventor BENJAMIN PENCE

BENJAMIN PENCE has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10347927
    Abstract: A fuel cell assembly including a plate assembly having an anode inlet, a cathode inlet, a first coolant inlet, and a second coolant inlet is provided. The first coolant inlet is located adjacent the anode inlet on a first plate side. The second coolant inlet is located adjacent the cathode inlet on a second plate side. The inlets are arranged such that coolant influences reactant temperature at the anode and cathode inlets to encourage formation of a membrane uniform hydration distribution during fuel cell operation. The fuel cell assembly may include a hydrogen channel, an oxygen channel, and a coolant channel. The coolant channel may extend between the hydrogen channel and the oxygen channel to draw heat from hydrogen and oxygen flowing therethrough and such that the hydrogen and oxygen are close enough to one another for chemical reaction therebetween.
    Type: Grant
    Filed: July 18, 2017
    Date of Patent: July 9, 2019
    Assignee: Ford Global Technologies, LLC
    Inventors: Benjamin Pence, Michael Allen DeBolt, Valerie Anne Nelson, Daniel E. Wilkosz
  • Publication number: 20190027766
    Abstract: A fuel cell assembly including a plate assembly having an anode inlet, a cathode inlet, a first coolant inlet, and a second coolant inlet is provided. The first coolant inlet is located adjacent the anode inlet on a first plate side. The second coolant inlet is located adjacent the cathode inlet on a second plate side. The inlets are arranged such that coolant influences reactant temperature at the anode and cathode inlets to encourage formation of a membrane uniform hydration distribution during fuel cell operation. The fuel cell assembly may include a hydrogen channel, an oxygen channel, and a coolant channel. The coolant channel may extend between the hydrogen channel and the oxygen channel to draw heat from hydrogen and oxygen flowing therethrough and such that the hydrogen and oxygen are close enough to one another for chemical reaction therebetween.
    Type: Application
    Filed: July 18, 2017
    Publication date: January 24, 2019
    Applicant: Ford Global Technologies, LLC
    Inventors: Benjamin Pence, Michael Allen DeBolt, Valerie Anne Nelson, Daniel E. Wilkosz
  • Patent number: 9997795
    Abstract: A water management method for a fuel cell stack (FCS) is provided. The method may include outputting via a controller an FCS anode port estimated relative humidity value based on consumption of reactants and generation of products in the FCS and adjusting a humidification control strategy based on the value. The outputting may be in response to occurrence of a predicted FCS anode port relative humidity value from a model of a hydrogen recirculation system (HRS) of the FCS being within a predefined range. A fuel cell vehicle including a HRS and a controller is also provided. The HRS may include an ejector and a fuel cell stack having an anode port. The controller may be configured to activate a HRS model to calculate a real-time estimate of a relative humidity of the anode port based on an estimated flow rate of a secondary nozzle of the ejector.
    Type: Grant
    Filed: September 25, 2015
    Date of Patent: June 12, 2018
    Assignee: Ford Global Technologies, LLC
    Inventor: Benjamin Pence
  • Publication number: 20170092972
    Abstract: A water management method for a fuel cell stack (FCS) is provided. The method may include outputting via a controller an FCS anode port estimated relative humidity value based on consumption of reactants and generation of products in the FCS and adjusting a humidification control strategy based on the value. The outputting may be in response to occurrence of a predicted FCS anode port relative humidity value from a model of a hydrogen recirculation system (HRS) of the FCS being within a predefined range. A fuel cell vehicle including a HRS and a controller is also provided. The HRS may include an ejector and a fuel cell stack having an anode port. The controller may be configured to activate a HRS model to calculate a real-time estimate of a relative humidity of the anode port based on an estimated flow rate of a secondary nozzle of the ejector.
    Type: Application
    Filed: September 25, 2015
    Publication date: March 30, 2017
    Inventor: Benjamin Pence
  • Patent number: 9468909
    Abstract: In at least one embodiment, an oxygen reduction reaction catalyst (ORR) and a method for making the catalyst are provided. The method may include depositing a metal oxide on a graphitized carbon or graphene substrate. A platinum catalyst may then be deposited over the metal oxide to provide an ORR catalyst for use in, for example, a PEMFC. The metal oxide may be niobium oxide and may have an amorphous structure. The platinum catalyst may form a thin, electrically interconnected network structure overlaying the metal oxide. The ORR catalyst may be prepared by alternating the deposition of the metal oxide and the platinum catalyst, for example, using physical vapor deposition. The ORR catalyst may have a specific activity of at least 1,000 ?A/cm2 Pt and may approach or achieve bulk Pt activity.
    Type: Grant
    Filed: June 27, 2014
    Date of Patent: October 18, 2016
    Assignee: Ford Global Technologies, LLC
    Inventors: Jun Yang, Chunchuan Xu, Patrick Pietrasz, Kerrie Gath, Benjamin Pence, Mark John Jagner, James Waldecker, Shinichi Hirano, Michael Alan Tamor
  • Publication number: 20150375208
    Abstract: In at least one embodiment, an oxygen reduction reaction catalyst (ORR) and a method for making the catalyst are provided. The method may include depositing a metal oxide on a graphitized carbon or graphene substrate. A platinum catalyst may then be deposited over the metal oxide to provide an ORR catalyst for use in, for example, a PEMFC. The metal oxide may be niobium oxide and may have an amorphous structure. The platinum catalyst may form a thin, electrically interconnected network structure overlaying the metal oxide. The ORR catalyst may be prepared by alternating the deposition of the metal oxide and the platinum catalyst, for example, using physical vapor deposition. The ORR catalyst may have a specific activity of at least 1,000 ?A/cm2 Pt and may approach or achieve bulk Pt activity.
    Type: Application
    Filed: June 27, 2014
    Publication date: December 31, 2015
    Inventors: JUN YANG, CHUNCHUAN XU, PATRICK PIETRASZ, KERRIE GATH, BENJAMIN PENCE, MARK JOHN JAGNER, JAMES WALDECKER, SHINICHI HIRANO, MICHAEL ALAN TAMOR