Patents by Inventor Benjamin Pollack

Benjamin Pollack has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11009467
    Abstract: A model-based method of inspecting a specimen for presence of one or more interferent, such as Hemolysis, Icterus, and/or Lipemia (HI L) is provided. The method includes generating a pixelated image of the specimen in a first color space, determining color components (e.g., an a-value and a b-value) for pixels in the pixelated image, classifying of the pixels as being either liquid or non-liquid, defining one or more liquid regions based upon the pixels classified as liquid, and determining a presence of one or more interferent within the one or more liquid regions. The liquid classification is based upon a liquid classification model. Pixel classification may be based on a trained multiclass classifier. Interference level for the one or more interferent may be provided. Testing apparatus adapted to carry out the method are described, as are other aspects.
    Type: Grant
    Filed: February 16, 2016
    Date of Patent: May 18, 2021
    Assignee: Siemens Healthcare Diagnostics Inc.
    Inventors: JinHyeong Park, Yao-Jen Chang, Wen Wu, Terrence Chen, Benjamin Pollack
  • Patent number: 10824832
    Abstract: Barcode tag conditions on sample tubes are detected utilizing side view images of sample tubes for streamlining handling in clinical laboratory automation systems. The condition of the tags may be classified into classes, each divided into a list of additional subcategories that cover individual characteristics of the tag quality. According to an embodiment, a tube characterization station (TCS) is utilized to obtain the side view images. The TCS enables the simultaneous or near-simultaneous collection of three images for each tube, resulting in a 360 degree side view for each tube. The method is based on a supervised scene understanding concept, resulting in an explanation of each pixel into its semantic meaning. Two parallel low-level cues for condition recognition, in combination with a tube model extraction cue, may be utilized. The semantic scene information is then integrated into a mid-level representation for final decision making into one of the condition classes.
    Type: Grant
    Filed: February 16, 2016
    Date of Patent: November 3, 2020
    Assignee: Siemens Healthcare Diagnostics Inc.
    Inventors: Stefan Kluckner, Yao-Jen Chang, Wen Wu, Benjamin Pollack, Terrence Chen
  • Patent number: 10725060
    Abstract: A method of tube slot localization is provided using a tray coordinate system and a camera coordinate system. The method includes receiving, a series of images from at least one camera of a tray comprising tube slots arranged in a matrix of rows and columns. Each tube slot is configured to receive a sample tube. The method also includes automatically detecting fiducial markers disposed on cross sectional areas between the tube slots on the tray and receiving an encoder value indicating when each row of the tray is substantially at the center of the camera's field of view. The method further includes determining calibration information to provide mapping of locations from the tray coordinate system to locations from the camera coordinate system and automatically aligning the tray based on the encoder value and calibration information.
    Type: Grant
    Filed: February 16, 2016
    Date of Patent: July 28, 2020
    Assignee: Siemens Healthcare Diagnostics Inc.
    Inventors: Yao-Jen Chang, Patrick Wissmann, Wen Wu, Guillaume Dumont, Benjamin Pollack, Terrence Chen
  • Patent number: 10705103
    Abstract: Systems and methods for use in an in vitro diagnostics setting may include an automation track, a plurality of carriers configured to carry a plurality of sample vessels along the automation track, and a characterization station including a plurality of optical devices. A processor, in communication with the characterization station, can be configured to analyze images to automatically characterize physical attributes related to each carrier and/or sample vessel. A method may include receiving a plurality of images from a plurality of optical devices of a characterization station, wherein the plurality of images comprise images from a plurality of perspectives of a sample vessel being transported by a carrier, automatically analyzing the plurality of images, using a processor, to determine certain characteristics of the sample vessel, and automatically associating the characteristics of the sample vessel with the carrier in a database.
    Type: Grant
    Filed: February 8, 2018
    Date of Patent: July 7, 2020
    Assignee: Siemens Healthcare Diagnostics Inc.
    Inventors: Benjamin Pollack, Ryan German
  • Publication number: 20190350808
    Abstract: A sample collection kit is described for ensuring positive sample identification. The sample collection kit includes a sample container configured to hold a biological sample. The sample container has a lower end, an upper end, a sidewall that extends from the lower end to the upper end, and an identifier disposed along the sidewall. The identifier includes information encoded therein related to the sample container and the sample. The kit includes a sample container holder. The sample container holder has a bottom end, an open top end, a sidewall, and a window in the sidewall. The window is positioned in the sidewall of the container holder such that when the collection tube is inserted inside the sample container holder, the identifier of the sample container is aligned with window of the sample container holder.
    Type: Application
    Filed: November 14, 2017
    Publication date: November 21, 2019
    Inventors: Eric Olson, Kathryn Wong, Christopher DiPasquale, Scott Salmon, Benjamin Pollack, Steven Bellofatto, Steven Madsen, Courtney Nicholls, Neil Berenholz
  • Patent number: 10325182
    Abstract: Embodiments are directed to classifying barcode tag conditions on sample tubes from top view images to streamline sample tube handling in advanced clinical laboratory automation systems. The classification of barcode tag conditions leads to the automatic detection of problematic barcode tags, allowing for a user to take necessary steps to fix the problematic barcode tags. A vision system is utilized to perform the automatic classification of barcode tag conditions on sample tubes from top view images. The classification of barcode tag conditions on sample tubes from top view images is based on the following factors: (1) a region-of-interest (ROI) extraction and rectification method based on sample tube detection; (2) a barcode tag condition classification method based on holistic features uniformly sampled from the rectified ROI; and (3) a problematic barcode tag area localization method based on pixel-based feature extraction.
    Type: Grant
    Filed: February 16, 2016
    Date of Patent: June 18, 2019
    Assignee: Siemens Healthcare Diagnostics Inc.
    Inventors: Khurram Soomro, Yao-Jen Chang, Stefan Kluckner, Wen Wu, Benjamin Pollack, Terrence Chen
  • Patent number: 10319092
    Abstract: A method for detecting properties of sample tubes is provided that includes extracting image patches substantially centered on a tube slot of a tray or a tube top in a slot. For each image patch, the method may include assigning a first location group defining whether the image patch is an image center, a corner of an image or a middle edge of an image, selecting a trained classifier based on the first location group and determining whether each tube slot contains a tube. The method may also include assigning a second location group defining whether the image patch is from an image center, a left corner of the image, a right corner of the image, a left middle of the image; a center middle of the image or a right middle of the image, selecting a trained classifier based on the second location group and determining a tube property.
    Type: Grant
    Filed: February 16, 2016
    Date of Patent: June 11, 2019
    Assignee: Siemens Healthcare Diagnostics Inc.
    Inventors: Wen Wu, Benjamin Pollack, Yao-Jen Chang, Guillaume Dumont, Terrence Chen
  • Patent number: 10290090
    Abstract: Embodiments provide a method of using image-based tube top circle detection that includes extracting, from one of a series of images of a tube tray, a region of interest (ROI) patch having a target tube top circle and boundaries constrained by two dimensional (2D) projections of different types of tube top circle centers. The method also includes calculating an edge gradient magnitude map of the ROI patch and constructing a three dimensional (3D) map of a circle parameter space, each location in the 3D map corresponding to a circle parameter having a center location and a diameter. The method further includes accumulating weighted votes in the 3D map from edge points in the edge gradient magnitude map along edge point gradient directions, determining locations in the 3D map as circle candidates based on the accumulated votes and selecting a target tube top circle based on the greatest accumulated votes.
    Type: Grant
    Filed: February 16, 2016
    Date of Patent: May 14, 2019
    Assignee: Siemens Healthcare Diagnostics Inc.
    Inventors: Yao-Jen Chang, Wen Wu, Guillaume Dumont, Benjamin Pollack, Terrence Chen
  • Patent number: 10145857
    Abstract: Images of a tube tray, which fits within a drawer and holds tubes in slots arranged in rows and columns, are captured to determine characteristics related to the tube tray. By analyzing the images, features of the tubes are determined, providing valuable information in an IVD environment in which a sample handler is processing the tubes. Each row of the tube tray is encoded to allow for detection of a new row moving into focus of cameras. The cameras capture an image of the tube tray, and the image is stored in a memory buffer. When the next row moves into focus, a subsequent image is taken and stored. The result is a series of images providing multi-perspective views of the rows of the tube tray. The images are analyzed to determine characteristics of the tubes, which are utilized by the sample handler in processing the tubes.
    Type: Grant
    Filed: March 14, 2014
    Date of Patent: December 4, 2018
    Assignee: Siemens Healthcare Diagnostics Inc.
    Inventors: Benjamin Pollack, Ryan German
  • Patent number: 10140705
    Abstract: Methods and systems for detecting properties of sample tubes in a laboratory environment include a drawer vision system that can be trained and calibrated. Images of a tube tray captured by at least one camera are analyzed to extract image patches that allow a processor to automatically determine if a tube slot is occupied, if the tube has a cap, and if the tube has a tube top cup. The processor can be trained using a random forest technique and a plurality of training image patches. Cameras can be calibrated using a three-dimensional calibration target that can be inserted into the drawer.
    Type: Grant
    Filed: June 10, 2015
    Date of Patent: November 27, 2018
    Assignee: Siemens Healthcare Diagnostics Inc.
    Inventors: Wen Wu, Yao-Jen Chang, David Liu, Benjamin Pollack, Terrence Chen
  • Patent number: 10126318
    Abstract: An analyzer for use with in vitro diagnostics includes an automation system to move a plurality of sample carriers within the system. At least some carriers include a plurality of slots. Each slot is configured to hold one of a plurality of fluid containers. The system also includes a place and pick device configured to place the plurality of fluid containers into the plurality of slots and remove the plurality of fluid containers from the plurality of slots. The system further includes a controller configured to place mother sample tubes along with empty sample tubes into the same carrier and move the carrier to an existing pipettor within the analyzer to aliquot a sample portion of the mother sample into the empty daughter tubes to create aliquots for certain samples without requiring a standalone aliquoting station or substantially disrupting the normal flow of sample tubes within the automation system.
    Type: Grant
    Filed: February 17, 2015
    Date of Patent: November 13, 2018
    Assignee: Siemens Healthcare Diagnostics Inc.
    Inventors: Benjamin Pollack, Colin Mellars
  • Publication number: 20180239936
    Abstract: Barcode tag conditions on sample tubes are detected utilizing side view images of sample tubes for streamlining handling in clinical laboratory automation systems. The condition of the tags may be classified into classes, each divided into a list of additional subcategories that cover individual characteristics of the tag quality. According to an embodiment, a tube characterization station (TCS) is utilized to obtain the side view images. The TCS enables the simultaneous or near-simultaneous collection of three images for each tube, resulting in a 360 degree side view for each tube. The method is based on a supervised scene understanding concept, resulting in an explanation of each pixel into its semantic meaning. Two parallel low-level cues for condition recognition, in combination with a tube model extraction cue, may be utilized. The semantic scene information is then integrated into a mid-level representation for final decision making into one of the condition classes.
    Type: Application
    Filed: February 16, 2016
    Publication date: August 23, 2018
    Applicant: Siemens Healthcare Diagnostics Inc.
    Inventors: Stefan Kluckner, Yao-Jen Chang, Wen Wu, Benjamin Pollack, Terrence Chen
  • Patent number: 10012661
    Abstract: Methods and systems are provided that allow scanning of barcode information on sample vessels in situ in a tray. A laboratory instrument includes one or more trays, each having a plurality of recesses, which are configured to hold a plurality of sample vessels, and a plurality of openings between the recesses. The instrument further includes one or more rods that are separate from the trays, each having optical elements configured to read barcode information on the sample vessels. The rods are configured to move through the plurality of openings.
    Type: Grant
    Filed: January 23, 2015
    Date of Patent: July 3, 2018
    Assignee: Siemens Healthcare Diagnostics Inc.
    Inventor: Benjamin Pollack
  • Publication number: 20180164335
    Abstract: Systems and methods for use in an in vitro diagnostics setting may include an automation track, a plurality of carriers configured to carry a plurality of sample vessels along the automation track, and a characterization station including a plurality of optical devices. A processor, in communication with the characterization station, can be configured to analyze images to automatically characterize physical attributes related to each carrier and/or sample vessel. A method may include receiving a plurality of images from a plurality of optical devices of a characterization station, wherein the plurality of images comprise images from a plurality of perspectives of a sample vessel being transported by a carrier, automatically analyzing the plurality of images, using a processor, to determine certain characteristics of the sample vessel, and automatically associating the characteristics of the sample vessel with the carrier in a database.
    Type: Application
    Filed: February 8, 2018
    Publication date: June 14, 2018
    Applicant: Siemens Healthcare Diagnostics Inc.
    Inventors: Benjamin Pollack, Ryan German
  • Patent number: 9927450
    Abstract: Systems and methods for use in an in vitro diagnostics setting may include an automation track, a plurality of carriers configured to carry a plurality of sample vessels along the automation track, and a characterization station including a plurality of optical devices. A processor, in communication with the characterization station, can be configured to analyze images to automatically characterize physical attributes related to each carrier and/or sample vessel. A method may include receiving a plurality of images from a plurality of optical devices of a characterization station, wherein the plurality of images comprise images from a plurality of perspectives of a sample vessel being transported by a carrier, automatically analyzing the plurality of images, using a processor, to determine certain characteristics of the sample vessel, and automatically associating the characteristics of the sample vessel with the carrier in a database.
    Type: Grant
    Filed: March 7, 2014
    Date of Patent: March 27, 2018
    Assignee: Siemens Healthcare Diagnostics Inc.
    Inventors: Benjamin Pollack, Ryan German
  • Publication number: 20180046883
    Abstract: Embodiments are directed to classifying barcode tag conditions on sample tubes from top view images to streamline sample tube handling in advanced clinical laboratory automation systems. The classification of barcode tag conditions leads to the automatic detection of problematic barcode tags, allowing for a user to take necessary steps to fix the problematic barcode tags. A vision system is utilized to perform the automatic classification of barcode tag conditions on sample tubes from top view images. The classification of barcode tag conditions on sample tubes from top view images is based on the following factors: (1) a region-of-interest (ROI) extraction and rectification method based on sample tube detection; (2) a barcode tag condition classification method based on holistic features uniformly sampled from the rectified ROI; and (3) a problematic barcode tag area localization method based on pixel-based feature extraction.
    Type: Application
    Filed: February 16, 2016
    Publication date: February 15, 2018
    Applicant: Siemens Healthcare Diagnostics Inc.
    Inventors: Khurram Soomro, Yao-Jen Chang, Stefan Kluckner, Wen Wu, Benjamin Pollack, Terrence Chen
  • Publication number: 20180047150
    Abstract: Embodiments provide a method of using image-based tube top circle detection that includes extracting, from one of a series of images of a tube tray, a region of interest (ROI) patch having a target tube top circle and boundaries constrained by two dimensional (2D) projections of different types of tube top circle centers. The method also includes calculating an edge gradient magnitude map of the ROI patch and constructing a three dimensional (3D) map of a circle parameter space, each location in the 3D map corresponding to a circle parameter having a center location and a diameter. The method further includes accumulating weighted votes in the 3D map from edge points in the edge gradient magnitude map along edge point gradient directions, determining locations in the 3D map as circle candidates based on the accumulated votes and selecting a target tube top circle based on the greatest accumulated votes.
    Type: Application
    Filed: February 16, 2016
    Publication date: February 15, 2018
    Applicant: Siemens Healthcare Diagnostics Inc.
    Inventors: Yao-Jen Chang, Wen Wu, Guillaume Dumont, Benjamin Pollack, Terrence Chen
  • Publication number: 20180045654
    Abstract: A model-based method of inspecting a specimen for presence of one or more interferent, such as Hemolysis, Icterus, and/or Lipemia (HI L) is provided. The method includes generating a pixelated image of the specimen in a first color space, determining color components (e.g., an a-value and a b-value) for pixels in the pixelated image, classifying of the pixels as being either liquid or non-liquid, defining one or more liquid regions based upon the pixels classified as liquid, and determining a presence of one or more interferent within the one or more liquid regions. The liquid classification is based upon a liquid classification model. Pixel classification may be based on a trained multiclass classifier. Interference level for the one or more interferent may be provided. Testing apparatus adapted to carry out the method are described, as are other aspects.
    Type: Application
    Filed: February 16, 2016
    Publication date: February 15, 2018
    Applicant: Siemens Healthcare Diagnostics Inc.
    Inventors: JinHyeong Park, Yao-Jen Chang, Wen Wu, Terrence Chen, Benjamin Pollack
  • Publication number: 20180045747
    Abstract: A method of tube slot localization is provided using a tray coordinate system and a camera coordinate system. The method includes receiving, a series of images from at least one camera of a tray comprising tube slots arranged in a matrix of rows and columns. Each tube slot is configured to receive a sample tube. The method also includes automatically detecting fiducial markers disposed on cross sectional areas between the tube slots on the tray and receiving an encoder value indicating when each row of the tray is substantially at the center of the camera's field of view. The method further includes determining calibration information to provide mapping of locations from the tray coordinate system to locations from the camera coordinate system and automatically aligning the tray based on the encoder value and calibration information.
    Type: Application
    Filed: February 16, 2016
    Publication date: February 15, 2018
    Applicant: Siemens Healthcare Diagnostics Inc.
    Inventors: Yao-Jen Chang, Patrick Wissmann, Wen Wu, Guillaume Dumont, Benjamin Pollack, Terrence Chen
  • Publication number: 20180033140
    Abstract: A method for detecting properties of sample tubes is provided that includes extracting image patches substantially centered on a tube slot of a tray or a tube top in a slot. For each image patch, the method may include assigning a first location group defining whether the image patch is an image center, a corner of an image or a middle edge of an image, selecting a trained classifier based on the first location group and determining whether each tube slot contains a tube. The method may also include assigning a second location group defining whether the image patch is from an image center, a left corner of the image, a right corner of the image, a left middle of the image; a center middle of the image or a right middle of the image, selecting a trained classifier based on the second location group and determining a tube property.
    Type: Application
    Filed: February 16, 2016
    Publication date: February 1, 2018
    Applicant: Siemens Healthcare Diagnostics Inc.
    Inventors: Wen Wu, Benjamin Pollack, Yao-Jen Chang, Guillaume Dumont, Terrence Chen