Patents by Inventor Benjamin R. Coonce

Benjamin R. Coonce has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210364682
    Abstract: An optical assembly including an optical element insert molded directly onto an optical stack is provided. The optical stack includes an optical film and may include a liner with the optical film being disposed between the optical element and the liner. The liner, if included, is removable from the optical film without substantial damage to the optical film. An outermost layer of the optical film may be diffusion bonded to a major surface of the optical element. The optical film includes a protective coating having an average thickness of no more than 30 micrometers. The protective coating includes an at least partially cured composition. The composition includes 70 to 96 weight percent of urethane (meth)acrylate compound having an average (meth)acrylate functionality of 2 to 9.5, and 2 to 20 weight percent of (meth)acrylate monomer having a (meth)acrylate functionality of 1 to 2.
    Type: Application
    Filed: June 7, 2019
    Publication date: November 25, 2021
    Inventors: Gregg A. Ambur, Benjamin G. Sonnek, Jo A. Etter, Timothy L. Wong, Thomas P. Klun, Richard J. Pokorny, Benjamin R. Coonce, Douglas S. Dunn, Henry A. Kostalik, IV, Christopher S. DeGraw, John R. Jacobson, Chunjie Zhang, Jung-Sheng Wu
  • Publication number: 20210301042
    Abstract: The present disclosure provides a photopolymerizable composition. The photopolymerizable composition includes a) 40-60 parts by weight of a monofunctional (meth)acrylate monomer, per 100 parts of the total photopolymerizable composition; b) a photoinitiator; and c) a polymerization reaction product of components. A cured homopolymer of the monofunctional (meth)acrylate monomer has a glass transition temperature of 125 degrees Celsius or greater. The polymerization reaction product of components includes i) a diisocyanate; ii) a hydroxy functional methacrylate; iii) a polycarbonate diol; and iv) a catalyst. The polymerization reaction product includes a polyurethane methacrylate polymer.
    Type: Application
    Filed: June 10, 2021
    Publication date: September 30, 2021
    Inventors: Thomas P. Klun, Zeba Parkar, John M. Riedesel, Richard J. Pokorny, Chad M. Amb, Benjamin R. Coonce, Robert S. Clough, Tianyu Wu, Saswata Chakraborty, Yongshang Lu, Benjamin C. Mac Murray
  • Patent number: 11104758
    Abstract: The present disclosure provides an orthodontic article including the reaction product of the photopolymerizable composition. The photopolymerizable composition includes i) a monofunctional (meth)acrylate monomer whose cured homopolymer has a glass transition temperature of 90 degrees Celsius or greater; ii) a photoinitiator; and iii) a polymerization reaction product of components. The components include 1) an isocyanate; 2) a (meth)acrylate mono-ol; 3) a polycarbonate diol; and 4) a catalyst. Further, the present disclosure provides a method of making an orthodontic article. The method includes obtaining a photopolymerizable composition and selectively curing the photopolymerizable composition to form an orthodontic article.
    Type: Grant
    Filed: May 21, 2019
    Date of Patent: August 31, 2021
    Assignee: 3M Innovative Properties Company
    Inventors: Thomas P. Klun, Zeba Parkar, John M. Riedesel, Richard J. Pokorny, Chad M. Amb, Benjamin R. Coonce, Robert S. Clough, Tianyu Wu, Saswata Chakraborty, Yongshang Lu, Benjamin C. MacMurray, Ian Dailey, David B. Olson
  • Publication number: 20210221080
    Abstract: A method of making a shaped abrasion-resistant multilayer optical film includes providing a curable composition comprising, based on the total weight of components a) to d) components: a) 87 to 96 weight percent of urethane (meth)acrylate compound having an average (meth)acrylate functionality of 2 to 4.8; b) 2 to 12.5 weight percent of (meth)acrylate monomer having a (meth)acrylate functionality of 1 to 2, wherein the (meth)acrylate monomer does not comprise a urethane (meth)acrylate compound; optionally c) 0.5 to 2 weight percent of silicone (meth)acrylate; and d) optional effective amount of photoinitiator. The curable composition is coated onto an MOF. Optionally, the curable composition to is at least partially dried. Next, the curable composition or the at least partially dried curable composition is at least partially cured to provide an abrasion-resistant multilayer optical film. Lastly, the abrasion-resistant multilayer optical film is thermoformed using a female mold having a mold surface.
    Type: Application
    Filed: May 30, 2019
    Publication date: July 22, 2021
    Inventors: Benjamin R. Coonce, Richard J. Pokorny, Thomas P. Klun, Chunjie Zhang, Gregg A. Ambur, Benjamin G. Sonnek, Daniel J. Richter, Jung-Sheng Wu
  • Patent number: 11065855
    Abstract: A method of making an infrared-reflecting optically transparent assembly comprises: coating a curable composition onto a major surface of an optically transparent thermoplastic polymer film; at least partially curing the curable composition, which may be optionally at least partially dried, to provide a thermoformable composite film; and laminating the thermoformable composite film to an infrared-reflecting multilayer optical film to provide the infrared-reflecting optically transparent assembly. The curable composition comprises urethane (meth)acrylate compound, (meth)acrylate monomer, and silicone (meth)acrylate. The infrared-reflecting optically transparent assembly and methods of including it in an infrared-reflecting lens assembly are also disclosed.
    Type: Grant
    Filed: December 13, 2017
    Date of Patent: July 20, 2021
    Assignee: 3M Innovative Properties Company
    Inventors: Thomas P. Klun, Richard J. Pokorny, Benjamin R. Coonce, Douglas S. Dunn, Gregg A. Ambur, Henry A. Kostalik, IV, John R. Jacobson, Christopher S. DeGraw, Chunjie Zhang
  • Publication number: 20210214575
    Abstract: Coatable compositions for formation of ink-receptive layers, which may be aqueous suspensions, comprise a mixture of: a) colloidal silica particles; b) polyester polymers; c) polymers selected from the group consisting of polyurethane polymers and (meth)acrylate polymers; and d) crosslinkers. Ink-receptive layers, which may exhibit high gloss and high ink anchoring are also provided, as are constructions comprising such layers.
    Type: Application
    Filed: June 27, 2019
    Publication date: July 15, 2021
    Inventors: Dean M. Moren, Maciej P. Pietras, Rachna Khurana, Benjamin R. Coonce
  • Publication number: 20210208320
    Abstract: An optical assembly including an optical element insert molded directly onto an optical stack is provided. The optical stack includes an optical film and may include a liner with the optical film being disposed between the optical element and the liner. The liner, if included, is removable from the optical film without substantial damage to the optical film. An outermost layer of the optical film may be diffusion bonded to a major surface of the optical element.
    Type: Application
    Filed: October 3, 2018
    Publication date: July 8, 2021
    Inventors: Gregg A. Ambur, Benjamin G. Sonnek, Jo A. Etter, Timothy L. Wong, Thomas P. Klun, Richard J. Pokomy, Benjamin R. Coonce, Douglas S. Dunn, Henry A. Kostalik, Christopher S. Degraw, John R. Jacobson, Chunjie Zhang
  • Publication number: 20210212216
    Abstract: Flexible devices including conductive traces with enhanced stretchability, and methods of making and using the same are provided. The circuit die is disposed on a flexible substrate. Electrically conductive traces are formed in channels on the flexible substrate to electrically contact with contact pads of the circuit die. A first polymer liquid flows in the channels to cover a free surface of the traces. The circuit die can also be surrounded by a curing product of a second polymer liquid.
    Type: Application
    Filed: September 12, 2019
    Publication date: July 8, 2021
    Inventors: Saagar Shah, Mikhail L. Pekurovsky, Ankit Mahajan, Lyudmila A. Pekurovsky, Jessica Chiu, Jeremy K. Larsen, Kara A. Meyers, Teresa M. Goeddel, Thomas J. Metzler, Jonathan W. Kemling, Richard J. Pokorny, Benjamin R. Coonce, Chad M. Amb, Thomas P. Klun
  • Publication number: 20210171701
    Abstract: The present disclosure provides an orthodontic article including the reaction product of the polymerizable composition. Further, the present disclosure provides polymerizable compositions and methods of making an orthodontic article. The method includes obtaining a polymerizable composition and selectively curing the polymerizable composition to form an orthodontic article. Further, methods are provided, including receiving, by a manufacturing device having one or more processors, a digital object comprising data specifying an orthodontic article; and generating, with the manufacturing device by an additive manufacturing process, the orthodontic article based on the digital object. A system is also provided, including a display that displays a 3D model of an orthodontic article; and one or more processors that, in response to the 3D model selected by a user, cause a 3D printer to create a physical object of an orthodontic article.
    Type: Application
    Filed: June 27, 2019
    Publication date: June 10, 2021
    Inventors: Thomas P. Klun, Zeba Parkar, John M. Riedesel, Richard J. Pokorny, Chad M. Amb, Benjamin R. Coonce, Robert S. Clough, Tianyu Wu, Saswata Chakraborty, Yongshang Lu, Benjamin C. Mac Murray, Ahmed S. Abuelyaman, Karl J.L. Geisler, Jodi L. Connell, Ta-Hua Yu
  • Publication number: 20210163664
    Abstract: The present disclosure provides an orthodontic article including the reaction product of the photopolymerizable composition. The photopolymerizable composition includes i) a monofunctional (meth)acrylate monomer whose cured homopolymer has a glass transition temperature of 90 degrees Celsius or greater; ii) a photoinitiator; and iii) a polymerization reaction product of components. The components include 1) an isocyanate; 2) a (meth)acrylate mono-ol; 3) a polycarbonate diol; and 4) a catalyst. Further, the present disclosure provides a method of making an orthodontic article. The method includes obtaining a photopolymerizable composition and selectively curing the photopolymerizable composition to form an orthodontic article.
    Type: Application
    Filed: May 21, 2019
    Publication date: June 3, 2021
    Inventors: Thomas P. Klun, Zeba Parkar, John M. Riedesel, Richard J. Pokorny, Chad M. Amb, Benjamin R. Coonce, Robert S. Clough, Tianyu Wu, Saswata Chakraborty, Yongshang Lu, Benjamin C. Mac Murray, Ian Dailey, David B. Olson
  • Publication number: 20210149092
    Abstract: Article (9,19) comprising a substrate (10, 20) comprising a polymer and having first (11,21) and second (12, 22) opposed major surfaces. The first major surface (11, 21) has first surface regions (13, 23) with first nanoparticles (14a, 14b, 14c, 14d, 24a, 24b, 24c, 24d) partially embedded into the first major surface (11, 21), and one of •(a) second surface regions (15) free of nanoparticles; or •(b) second surface regions (25) with at least second nanoparticles (28) on the first major surface (11, 21) or partially embedded into the first major surface (11, 21). The first surface regions (13, 23) have a first average surface roughness, Ra1, of at least 20 nm, wherein the second surface regions (15, 25) have a second average surface roughness, Ra2, of less than 100 nm, wherein the first average surface roughness, Ra1, is greater than the second average surface roughness, Ra2, and wherein there is an absolute difference between the first and second average surface roughness of at least 10 nm.
    Type: Application
    Filed: June 20, 2018
    Publication date: May 20, 2021
    Inventors: Matthew H. Frey, Megan A. Creighton, Morgan A. Priolo, Benjamin R. Coonce
  • Publication number: 20210095056
    Abstract: The present disclosure provides a photopolymerizable composition. The photopolymerizable composition includes a) 40-60 parts by weight of a monofunctional (meth)acrylate monomer, per 100 parts of the total photopolymerizable composition; b) a photoinitiator; and c) a polymerization reaction product of components. A cured homopolymer of the monofunctional (meth)acrylate monomer has a glass transition temperature of 125 degrees Celsius or greater. The polymerization reaction product of components includes i) a diisocyanate; ii) a hydroxy functional methacrylate; iii) a polycarbonate diol; and iv) a catalyst. The polymerization reaction product includes a polyurethane methacrylate polymer.
    Type: Application
    Filed: May 21, 2019
    Publication date: April 1, 2021
    Inventors: Thomas P. Klun, Zeba Parkar, John M. Riedesel, Richard J. Pokorny, Chad M. Amb, Benjamin R. Coonce, Robert S. Clough, Tianyu Wu, Saswata Chakraborty, Yongshang Lu, Benjamin C. Mac Murray, Ian Dailey, David B. Olson
  • Publication number: 20200354607
    Abstract: A curable composition comprises: a) 91 to 98.2 weight percent of: (i) at least one polymerizable compound containing at least one carbamylene group; or (ii) at least one polyurethane precursor system; and b) 0.2 to 9 weight percent of alpha alumina particles having a particle size distribution with a Dv50 of from 0.1 to 1 micron, wherein the weight percentages of a) and b) are based upon the total amount of a) and b). Cured compositions and their use in thermoforming are also disclosed.
    Type: Application
    Filed: December 6, 2018
    Publication date: November 12, 2020
    Inventors: Thomas P. Klun, Chunjie Zhang, Richard J. Pokorny, Benjamin R. Coonce, Benjamin G. Sonnek, Gregg A. Ambur, Jung-Sheng Wu
  • Publication number: 20200324527
    Abstract: A composite film comprises: a first unitary thermoplastic polymer film; a low surface energy abrasion resistant layer disposed on the first unitary thermoplastic polymer film; a first adhesive layer proximate and securely bonded to the first unitary thermoplastic polymer film; a second unitary thermoplastic polymer film bonded to the first adhesive layer; and a second adhesive layer bonded to the second unitary thermoplastic polymer film opposite the first adhesive layer. A protective cover for an electronic device comprises: a first unitary thermoplastic polymer film; a low surface energy abrasion resistant layer disposed on the first unitary thermoplastic polymer film; a first adhesive layer proximate and securely bonded to the first unitary thermoplastic polymer film.
    Type: Application
    Filed: December 7, 2018
    Publication date: October 15, 2020
    Inventors: Thomas P. Klun, Chunjie Zhang, Richard J. Pokorny, Benjamin R. Coonce, Benjamin G. Sonnek, Gregg A. Ambur, Jung-Sheng Wu
  • Publication number: 20200325348
    Abstract: A composition is provided, including water, a base, and surface-modified inorganic oxide nanoparticles dispersed in the water. The nanoparticles are functionalized with an alpha-hydroxy acid or its salt. An article is also provided, including a substrate in and layers containing bi-layers. A portion of the layers include surface-modified inorganic oxide nanoparticles functionalized with an alpha-hydroxy acid or its salt. A dielectric mirror is also provided, including a substrate, a first stack of bi-layers disposed on the substrate, and a second stack of bi-layers positioned in planar contact with the first stack. The second stack of bi-layers exhibits a refractive index of less than 1.50. Further, an exposed lens retroreflective article is provided including a binder layer, a layer of transparent microspheres partially embedded in the binder layer, and a reflective layer between the binder layer and the microspheres including a dielectric mirror.
    Type: Application
    Filed: June 14, 2017
    Publication date: October 15, 2020
    Inventors: Daniel J. Schmidt, Benjamin R. Coonce, Richard S. Buckanin
  • Publication number: 20200283638
    Abstract: Coatable compositions for formation of ink-receptive layers, which may be aqueous suspensions, comprise a mixture of: a) 8.0-75 wt % (based on the total weight of a), b), c), and d)) of colloidal silica particles having an average particle size of 2.0-150 nm; b) 10-75 wt % of one or more polyester polymers; c) 10-75 wt % of one or more polymers selected from the group consisting of polyurethane polymers and (meth)acrylate polymers; and d) 0-10 wt % of one or more crosslinkers. Ink-receptive layers, which may exhibit high gloss and high ink anchoring are also provided, as are constructions comprising such layers. Porous solids are also provided, comprising: a) 8.0-75 wt % of colloidal silica particles having an average particle size of 2.0-150 nm; and b) one or more water dispersible polymers.
    Type: Application
    Filed: November 16, 2018
    Publication date: September 10, 2020
    Inventors: Rachna Khurana, Maciej P. Pietras, Benjamin R. Coonce, Naiyong Jing
  • Publication number: 20200115804
    Abstract: A method comprises exposing a particle coating disposed on a thermally-softenable film to a modulated source of electromagnetic radiation. The particle coating comprises distinct particles that are not covalently bonded to each other, and are not retained in a binder material other than the thermally-softenable film. Articles made by the method are also disclosed.
    Type: Application
    Filed: June 27, 2018
    Publication date: April 16, 2020
    Inventors: Megan A. Creighton, Morgan A. Priolo, Joel A. Getschel, Taylor J. Kobe, Onur Sinan Yordem, Benjamin R. Coonce, Eric A. Vandre
  • Publication number: 20200070200
    Abstract: A method of making a buff-coated article includes disposing a tie layer on at least a portion of a major surface of a substrate and buff-coating a powder onto at least a portion of the tie layer. Buff-coated articles are also disclosed.
    Type: Application
    Filed: February 15, 2018
    Publication date: March 5, 2020
    Inventors: Benjamin R. Coonce, Morgan A. Priolo, Megan A. Creighton, Emily S. Goenner, Daniel J. O'Neal
  • Publication number: 20190310404
    Abstract: A method of making an infrared-reflecting optically transparent assembly comprises: coating a curable composition onto a major surface of an optically transparent thermoplastic polymer film; at least partially curing the curable composition, which may be optionally at least partially dried, to provide a thermoformable composite film; and laminating the thermoformable composite film to an infrared-reflecting multilayer optical film to provide the infrared-reflecting optically transparent assembly. The curable composition comprises urethane (meth)acrylate compound, (meth)acrylate monomer, and silicone (meth)acrylate. The infrared-reflecting optically transparent assembly and methods of including it in an infrared-reflecting lens assembly are also disclosed.
    Type: Application
    Filed: December 13, 2017
    Publication date: October 10, 2019
    Inventors: Thomas P. Klun, Richard J. Pokorny, Benjamin R. Coonce, Douglas S. Dunn, Gregg A. Ambur, Henry A. Kostalik, IV, John R. Jacobson, Christopher S. DeGraw, Chunjie Zhang
  • Publication number: 20170174854
    Abstract: There is provided an article having a compliant article where the compliant article comprises an polymer layer and a first layer disposed along a first major surface of the polymer layer; and a plurality of microspheres partially embedded and adhered to a major surface of the first layer opposite the surface that is disposed along the first major surface of the polymer layer, wherein the article has a compression modulus of less than or equal to 0.5 MPa. There is also provided an article having a compliant article where the compliant article comprises a polymer layer; and a plurality of microspheres partially embedded and adhered to a major surface of the compliant article, where the article has a compression modulus of less than or equal to 0.5 MPa, and further where the article is a decorative article.
    Type: Application
    Filed: April 1, 2015
    Publication date: June 22, 2017
    Inventors: John C. Clark, Alexander J. Kugel, Benjamin R. Coonce, Vivek Krishnan, Christopher B. Walker, JR.