Patents by Inventor Benjamin R. Weidman

Benjamin R. Weidman has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9753835
    Abstract: System and method for debugging a graphical program. A graphical program may be received, e.g., from storage, from another process or device, etc. The program includes parallel graphical program portions, each portion including a graphical program structure and/or an execution path in the graphical program. A first graphical program portion of the parallel graphical program portions may be single step debugged, including executing the single step in the first graphical program portion, and executing, in the background, code in each of the other graphical program portions that is scheduled to execute between start and end of the single step in the first graphical program portion.
    Type: Grant
    Filed: November 10, 2015
    Date of Patent: September 5, 2017
    Assignee: NATIONAL INSTRUMENTS CORPORATION
    Inventors: Julian G. Valdez, Benjamin R. Weidman, Dustyn K. Blasig
  • Publication number: 20170132108
    Abstract: System and method for debugging a graphical program. A graphical program may be received, e.g., from storage, from another process or device, etc. The program includes parallel graphical program portions, each portion including a graphical program structure and/or an execution path in the graphical program. A first graphical program portion of the parallel graphical program portions may be single step debugged, including executing the single step in the first graphical program portion, and executing, in the background, code in each of the other graphical program portions that is scheduled to execute between start and end of the single step in the first graphical program portion.
    Type: Application
    Filed: November 10, 2015
    Publication date: May 11, 2017
    Inventors: Julian G. Valdez, Benjamin R. Weidman, Dustyn K. Blasig
  • Patent number: 8364446
    Abstract: System and method for approximating a system. A multi-parameter representation of a family of systems is stored. An embedding of the family into an abstract geometrical continuous space with a metric and defined by the parameters is determined. Coordinates of the space specify values for the parameters of systems of the family. The space includes a grid of points representing respective discrete approximations of the systems. A first point corresponding to a desired instance of a system is determined. The first point's coordinates specify values for the parameters of the instance. The space is sampled using a mapping of a well-distributed point set from a Euclidean space of the parameters to the abstract space. A nearest discrete point to the first point is determined which specifies values for parameters for an optimal discrete approximation of the desired instance, which are useable to implement the discrete approximation of the desired instance.
    Type: Grant
    Filed: October 12, 2009
    Date of Patent: January 29, 2013
    Assignee: National Instruments Corporation
    Inventors: James M. Lewis, Michael D. Cerna, Kyle P. Gupton, James C. Nagle, Yong Rao, Subramanian Ramamoorthy, Darren R. Schmidt, Bin Wang, Benjamin R. Weidman, Lothar Wenzel, Naxiong Zhang
  • Publication number: 20110087468
    Abstract: System and method for approximating a system. A multi-parameter representation of a family of systems is stored. An embedding of the family into an abstract geometrical continuous space with a metric and defined by the parameters is determined. Coordinates of the space specify values for the parameters of systems of the family. The space includes a grid of points representing respective discrete approximations of the systems. A first point corresponding to a desired instance of a system is determined. The first point's coordinates specify values for the parameters of the instance. The space is sampled using a mapping of a well-distributed point set from a Euclidean space of the parameters to the abstract space. A nearest discrete point to the first point is determined which specifies values for parameters for an optimal discrete approximation of the desired instance, which are useable to implement the discrete approximation of the desired instance.
    Type: Application
    Filed: October 12, 2009
    Publication date: April 14, 2011
    Inventors: James M. Lewis, Michael D. Cerna, Kyle P. Gupton, James C. Nagle, Yong Rao, Subramanian Ramamoorthy, Darren R. Schmidt, Benjamin R. Weidman, Lothar Wenzel, Naxiong Zhang, Bin Wang