Patents by Inventor Benjamin Reichman

Benjamin Reichman has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20010003997
    Abstract: A modified Ti—V—Zr—Ni—Mn—Cr electrochemical hydrogen storage alloy which has at least one of the following characteristics: 1) an increased charge/discharge rate capability over that the base Ti—V—Zr—Ni—Mn—Cr electrochemical hydrogen storage alloy; 2) a formation cycling requirement which is reduced to one tenth that of the base Ti—V—Zr—Ni—Mn—Cr electrochemical hydrogen storage alloy; or 3) an oxide surface layer having a higher electrochemical hydrogen storage catalytic activity than the base Ti—V—Zr—Ni—Mn—Cr electrochemical hydrogen storage alloy.
    Type: Application
    Filed: December 18, 2000
    Publication date: June 21, 2001
    Inventors: Michael A. Fetcenko, Kwo Young, Stanford R. Ovshinsky, Benjamin Reichman, John Koch, William Mays
  • Patent number: 6177213
    Abstract: A composite positive electrode material for use in electrochemical cells. The composite material may comprise a particle of positive electrode material, and a conductive material at least partially embedded within the particle of positive electrode material. The material may comprise a particle of positive electrode material, and a nucleating particle at least partially embedded therein.
    Type: Grant
    Filed: August 17, 1998
    Date of Patent: January 23, 2001
    Assignee: Energy Conversion Devices, Inc.
    Inventors: Michael A. Fetcenko, Christian Fierro, Stanford R. Ovshinsky, Beth Sommers, Benjamin Reichman, Kwo Young, William Mays
  • Patent number: 6171726
    Abstract: An active composition for an electrode of an electrochemical cell. The active composition comprises an electrode material, and a nonfibrillating polymeric binder. The polymeric binder may comprise a fluoradditive. Also disclosed in an electrode and an electrochemical cell comprising the active composition.
    Type: Grant
    Filed: December 24, 1998
    Date of Patent: January 9, 2001
    Assignee: Energy Conversion Devices, Inc.
    Inventors: Benjamin Reichman, William Mays, Michael A. Fetcenko
  • Patent number: 5856047
    Abstract: Nickel-metal hydride batteries and electrodes are capable of increased power output and recharge rates. The electrodes and batteries produced therefrom exhibit increased internal conductance. The positive and negative electrodes may be formed by pressing powdered metal-hydride active materials into porous metal substrates. The porous metal substrates are formed from copper, copper-plated nickel, or a copper-nickel alloy, and may be additionally plated with a material which is electrically conductive and resistant to corrosion in the battery environment, such as nickel.
    Type: Grant
    Filed: January 31, 1997
    Date of Patent: January 5, 1999
    Assignee: Ovonic Battery Company, Inc.
    Inventors: Srinivasan Venkatesan, Benjamin Reichman, Stanford R. Ovshinsky, Binay Prasad, Dennis A. Corrigan
  • Patent number: 5851698
    Abstract: Nickel-metal hydride batteries and electrodes capable of increased power output and recharge rates. The positive and negative electrodes may be formed by pressing powdered metal-hydride active materials into porous metal substrates. The porous metal substrates are formed from copper, copper-plated nickel, or a copper-nickel alloy. The electrode tab are directly attached to the porous metal substrate via a low electrical-resistance connection which includes welding, brazing, or soldering.
    Type: Grant
    Filed: January 31, 1997
    Date of Patent: December 22, 1998
    Assignee: Ovonic Battery Company, Inc.
    Inventors: Benjamin Reichman, Srinivasan Venkatesan, Stanford R. Ovshinsky, Michael A. Fetcenko
  • Patent number: 5840440
    Abstract: Disordered multicomponent hydrogen storage material characterized by extraordinarily high storage capacity due to a high density of useable hydrogen storage sites (greater than 10.sup.23 defect sites/cc) and/or an extremely small crystallite size. The hydrogen storage material can be employed for electrochemical, fuel cell and gas phase applications. The material may be selected from either of the modified LaNi.sub.5 or modified TiNi families formulated to have a crystallite size of less than 200 Angstroms and most preferably less than 100 Angstroms.
    Type: Grant
    Filed: November 20, 1995
    Date of Patent: November 24, 1998
    Assignee: Ovonic Battery Company, Inc.
    Inventors: Stanford R. Ovshinsky, Michael A. Fetcenko, Jun Su Im, Kwo Young, Benjamin S. Chao, Benjamin Reichman
  • Patent number: 5776633
    Abstract: Carbon/carbon composite materials for use in electrochemical cells are prepared by carbonizing a resin material used to bind a layer of carbon containing material to convert the resin to residual carbon. In one embodiment of the invention, the carbon containing material is a mixture of activated carbon fibers and activated carbon powder. In another embodiment, an activated carbon fabric is used instead of the discrete carbon fibers. Substantial improvements in mechanical properties, resistivity and surface area are achieved in the present invention. The composite materials may be used in the fabrication of electrodes and bipolar electrical devices such as capacitors.
    Type: Grant
    Filed: October 7, 1996
    Date of Patent: July 7, 1998
    Assignee: Johnson Controls Technology Company
    Inventors: Edward N. Mrotek, Benjamin Reichman, MengPing Yin
  • Patent number: 5705259
    Abstract: A double layer structure for use as a capacitor or battery electrode, for use in other electrochemical systems, includes in one embodiment a first layer containing conductive transition metal oxides and a second layer which includes conductive carbon embedded in a suitable binder. For capacitor and lead-acid battery applications the transition metal containing material is used as the negative terminal substrate. Another embodiment includes a carbon layer on an electrode surface, the electrode being made from the transition metal oxide in a binder. The last mentioned carbon layer is thin, inexpensive and more conductive than a laminate layer in which the carbon is imbedded in a self-supporting binder.
    Type: Grant
    Filed: October 25, 1995
    Date of Patent: January 6, 1998
    Assignee: Globe-Union Inc.
    Inventors: Edward N. Mrotek, Benjamin Reichman
  • Patent number: 5616432
    Abstract: A disordered multicomponent MgNi based electrochemical hydrogen storage material having a microstructure including a substantial volume fraction characterized by intermediate range order and exhibiting extraordinarily high storage capacity and methods of fabricating same.
    Type: Grant
    Filed: May 8, 1995
    Date of Patent: April 1, 1997
    Assignee: Ovonic Battery Company, Inc.
    Inventors: Stanford R. Ovshinsky, Michael A. Fetcenko, Benjamin Reichman, Kwo Young, Benjamin Chao, Jun Im
  • Patent number: 5554456
    Abstract: Non-uniform heterogeneous powder particles for electrochemical uses, and said powder particles comprising at least two separate and distinct hydrogen storage alloys selected from the group consisting of: Ovonic LaNi.sub.5 type alloys, Ovonic TiNi type alloys, and Ovonic MgNi based alloys.
    Type: Grant
    Filed: May 8, 1995
    Date of Patent: September 10, 1996
    Assignee: Ovonic Battery Company, Inc.
    Inventors: Stanford R. Ovshinsky, Michael A. Fetcenko, Jun Im, Benjamin Chao, Benjamin Reichman, Kwo Young
  • Patent number: 5536591
    Abstract: A disordered electrochemical hydrogen storage alloy comprising:(Base Alloy).sub.a Co.sub.b Mn.sub.c Fe.sub.d Sn.sub.ewhere the Base Alloy comprises 0.1 to 60 atomic percent Ti, 0.1 to 40 atomic percent Zr, 0 to 60 atomic percent V, 0.1 to 57 atomic percent Ni, and 0 to 56 atomic percent Cr; b is 0 to 7.5 atomic percent; c is 13 to 17 atomic percent; d is 0 to 3.5 atomic percent; e is 0 to 1.5 atomic percent; and a+b+c+d+e=100 atomic percent.
    Type: Grant
    Filed: April 17, 1995
    Date of Patent: July 16, 1996
    Assignee: Ovonic Battery Company, Inc.
    Inventors: Michael A. Fetcenko, Stanford R. Ovshinsky, Benjamin S. Chao, Benjamin Reichman
  • Patent number: 5017446
    Abstract: An electrode suitable for use as a lead-acid battery plate contains an inorganic metal oxide additive which enhances the formation of the plate. The additive is electrically conductive, stable in aqueous solutions of sulfuric acid, but does not participate in the electrode reaction. Suitable metal oxides include conductive oxides such as TiO.sub.2-x, WO.sub.3-x, MoO.sub.3-x, V.sub.2 O.sub.5-x, Nb.sub.2 O.sub.5-x, wherein x is greater than 0 and less than or equal to 1, mixtures thereof and mixed conductive oxides of these elements. The conductive oxides may also be used in electrodes for bipolar lead-acid batteries.
    Type: Grant
    Filed: October 24, 1989
    Date of Patent: May 21, 1991
    Assignee: Globe-Union Inc.
    Inventors: Benjamin Reichman, James I. Strebe
  • Patent number: 4728586
    Abstract: A high charge retention, reversible, multicomponent, multiphase, electrochemical hydrogen storage alloy comprising titanium, vanadium, zirconium, nickel, and chromium. The hydrogen storage alloy is capable of electrochemically charging and discharging hydrogen in alkaline aqueous media. In one preferred exemplification the hydrogen storage alloy comprises(Ti.sub.2-x Zr.sub.x V.sub.4-y Ni.sub.y).sub.1-z Cr.sub.zwhere 0.0 is less than x is less than 1.5, 0.6 is less than y is less than 3.5, and z is an effective amount less than 0.20. Also disclosed is a rechargeable, electrochemical cell utilizing a negative electrode formed of the alloy.
    Type: Grant
    Filed: December 29, 1986
    Date of Patent: March 1, 1988
    Assignee: Energy Conversion Devices, Inc.
    Inventors: Srini Venkatesan, Benjamin Reichman, Michael A. Fetcenko
  • Patent number: 4716088
    Abstract: Activated rechargeable hydrogen storage electrodes that are especially suitable for sealed, starved electrochemical cells and methods for making them are provided. The activated electrode includes a body of hydrogen storage active material that is composed of an agglomeration of particles of active hydrogen storage material. The body contains a residual amount of hydrogen and may have a modified surface, the residual amount of hydrogen generally being equivalent to a potential of about -0.7 volts versus a Hg/HgO reference electrode when discharged at a rate of about 5 mA/gram to 25 mA/gram of active material.
    Type: Grant
    Filed: December 29, 1986
    Date of Patent: December 29, 1987
    Assignee: Energy Conversion Devices, Inc.
    Inventors: Benjamin Reichman, Srini Venkatesan, Michael A. Fetcenko, Kenneth Jeffries, Sharon Stahl, Clifford Bennett
  • Patent number: 4656103
    Abstract: An amorphous silicon semiconductor alloy having multiple layers is used to form a photoelectrode (either a photoanode or a photocathode) for use in a photoelectrochemical cell for the photoelectrolysis of water to produce hydrogen or the conversion of solar energy into electrical energy. Each layer of the semiconductor alloy has a different dopant concentration ranging from no dopant to a heavy dopant concentration. The photoelectrochemical cell can utilize a photocathode and a conventional metal anode, a photoanode or both a photocathode and a photoanode according to the present invention. The semiconductor alloy of the photoelectrode is a-Si:F:H or a-Si:H.sub.x deposited on a reflective layer of aluminum or molybdenum which is deposited on a substrate of glass or stainless steel. A tunnelable oxide layer can be deposited or intrinsically formed to cover and protect the top surface of the semiconductor alloy body.
    Type: Grant
    Filed: May 20, 1985
    Date of Patent: April 7, 1987
    Assignee: Energy Conversion Devices, Inc.
    Inventors: Benjamin Reichman, Gao Liang, Krishna Sapru
  • Patent number: 4623597
    Abstract: An improved battery utilizing a hydrogen rechargeable anode of a disordered non-equilibrium multicomponent material including one or more elements forming a host matrix and at least one modifier element incorporated therein. The anode is capable of electrochemically absorbing hydrogen from an electrolyte during application of a charging current thereto. The hydrogen is stored in the anode bulk until discharge is initiated, whereupon an electrical current is produced when the hydrogen is released. The superior battery of the invention has attained high density energy storage, efficient reversibility, high electrical efficiency, bulk hydrogen storage without structural change or poisoning and hence long cycle life and deep discharge capability.
    Type: Grant
    Filed: November 25, 1985
    Date of Patent: November 18, 1986
    Assignee: Energy Conversion Devices, Inc.
    Inventors: Krishna Sapru, Benjamin Reichman, Arie Reger, Stanford R. Ovshinsky
  • Patent number: 4511838
    Abstract: A method for determining the potential of zero charge of an unpowdered semiconductor material. The semiconductor material is used as the working electrode 12 of a standard three-electrode photoelectrochemical cell 11. The onset potential of the semiconductor material is measured at several different cell temperatures. The slope of the graph of onset potential versus temperature is used to compute the potential of zero charge.
    Type: Grant
    Filed: March 31, 1982
    Date of Patent: April 16, 1985
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Benjamin Reichman, Charles E. Byvik
  • Patent number: 4511638
    Abstract: A photoresponsive amorphous semiconductor material is modified by incorporating at least one compensating agent selected from a group consisting of hydrogen, lithium, fluorine, beryllium, aluminum, boron, magnesium, other Group I elements, and compounds of these elements. The semiconductor material is cathodically treated either simultaneously with or subsequent to this modification. The semiconductor material may be additionally modified by incorporating a second modifying agent selected from a group consisting of silicon, the transition elements, the lanthanides, and compounds of these elements. The semiconductor material also may be subjected to heat treatment in an inert atmosphere before the cathodic treatment.A photoanode utilizing the above described semiconductor material further includes a substrate to support a film of said material. The photoanode may additionally include a second semiconductor film having a small band gap inserted between said substrate and said first semiconductor film.
    Type: Grant
    Filed: June 1, 1983
    Date of Patent: April 16, 1985
    Assignee: Energy Conversion Devices, Inc.
    Inventors: Krishna Sapru, Benjamin Reichman, Gao Liang
  • Patent number: 4439301
    Abstract: Photoelectrochemical cells employing chalcogenophosphate (MPX.sub.3) photoelectrodes are disclosed, where M is selected from the group of transition metal series of elements beginning with scandium (atomic number 21) through germanium (atomic number 32) yttrium (atomic number 39) through antimony (atomic number 51) and lanthanum (atomic number 57) through polonium (atomic number 84); P is phosphorus; and X is selected from the chalogenide series consisting of sulfur, selenium, and tellurium. These compounds have bandgaps in the desirable range of 2.0 eV to 2.2 eV for the photoelectrolysis of water and are stable when used as photoelectrodes for the same.
    Type: Grant
    Filed: October 7, 1982
    Date of Patent: March 27, 1984
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Benjamin Reichman, Charles E. Byvik
  • Patent number: 4365010
    Abstract: A photoelectrochromic display device having a semiconductor electrode, and a counterelectrode made of a selected metallic material is presented. The electrode and counterelectrode are immersed in an aqueous solution containing heptyl viologen. The device is usable as a display device, as a storage battery, and as an alternating current photoelectric generator. As a display device, the cell requires only two leads rather than multiple leads and complicated electrical addressing and decoding required for most multi-character displays.
    Type: Grant
    Filed: February 2, 1981
    Date of Patent: December 21, 1982
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Allen J. Bard, Fu-Ren F. Fan, Benjamin Reichman