Patents by Inventor Benjamin S. Umansky

Benjamin S. Umansky has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230212468
    Abstract: Provided herein are molecular sieve membranes for separating hydrocarbons of a lube feed stock into a permeate and a retentate based on molecular shape. The molecular sieve membranes comprise one or more layers of size-selective catalyst and a porous support comprising a plurality of diffusing gaps. Each layer of size-selective catalyst has a plurality of perpendicular membrane channels and a plurality of opening pores. The porous support is in fluidic communication with the plurality of opening pores to provide a fluidic pathway between the perpendicular membrane channels and the diffusing gaps. Also provided are processes for separating n-paraffins from other hydrocarbons in a lube feed stock using the present molecular sieve membranes.
    Type: Application
    Filed: March 29, 2021
    Publication date: July 6, 2023
    Applicant: EXXONMOBIL TECHNOLOGY AND ENGINEERING COMPANY
    Inventors: James W. Gleeson, Benjamin S. Umansky, Kendall S. Fruchey
  • Patent number: 10947460
    Abstract: Systems and methods are provided for producing upgraded raffinate and extract products from lubricant boiling range feeds and/or other feeds having a boiling range of 400° F. (204° C.) to 1500° F. (816° C.) or more. The upgraded raffinate and/or extract products can have a reduced or minimized concentration of sulfur, nitrogen, metals, or a combination thereof. The reduced or minimized concentration of sulfur, nitrogen, and/or metals can be achieved by hydrotreating a suitable feed under hydrotreatment conditions corresponding to relatively low levels of feed conversion. Optionally, the feed can also dewaxed, such as by catalytic dewaxing or by solvent dewaxing. Because excessive aromatic saturation is not desired, the pressure for hydrotreatment (and optional dewaxing) can be 500 psig (˜3.4 MPa) to 1200 psig (˜8.2 MPa).
    Type: Grant
    Filed: September 11, 2019
    Date of Patent: March 16, 2021
    Assignee: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Benjamin S. Umansky, Keith K. Aldous, James W. Gleeson, Edward J. Blok, Richard A. Demmin
  • Publication number: 20200140766
    Abstract: Systems and methods are provided for detecting abnormal temperature conditions within a fixed bed reactor. In a fixed bed reactor, a hydrocarbon (or hydrocarbon-like) feedstock can be exposed to one or more types of catalyst particles at elevated temperatures and/or pressures. In addition to the one or more types of catalyst particles, a plurality of temperature-sensor structures can be included in a catalyst bed and/or a coating including one or more temperature-sensor structures can be provided on an interior wall or other interior surface in the reactor. The temperature-sensor structures can have a threshold temperature at which the temperature-sensor structure changes to allow introduction and/or release of a detectable substance.
    Type: Application
    Filed: January 7, 2020
    Publication date: May 7, 2020
    Inventors: Dana W. Nouri, Hans G. Korsten, Benjamin S. Umansky
  • Patent number: 10590352
    Abstract: Systems and methods are provided for detecting abnormal temperature conditions within a fixed bed reactor. In a fixed bed reactor, a hydrocarbon (or hydrocarbon-like) feedstock can be exposed to one or more types of catalyst particles at elevated temperatures and/or pressures. In addition to the one or more types of catalyst particles, a plurality of temperature-sensor structures can be included in a catalyst bed and/or a coating including one or more temperature-sensor structures can be provided on an interior wall or other interior surface in the reactor. The temperature-sensor structures can have a threshold temperature at which the temperature-sensor structure changes to allow introduction and/or release of a detectable substance.
    Type: Grant
    Filed: February 16, 2017
    Date of Patent: March 17, 2020
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Dana W. Nouri, Hans G. Korsten, Benjamin S. Umansky
  • Publication number: 20200002625
    Abstract: Systems and methods are provided for producing upgraded raffinate and extract products from lubricant boiling range feeds and/or other feeds having a boiling range of 400° F. (204° C.) to 1500° F. (816° C.) or more. The upgraded raffinate and/or extract products can have a reduced or minimized concentration of sulfur, nitrogen, metals, or a combination thereof. The reduced or minimized concentration of sulfur, nitrogen, and/or metals can be achieved by hydrotreating a suitable feed under hydrotreatment conditions corresponding to relatively low levels of feed conversion. Optionally, the feed can also dewaxed, such as by catalytic dewaxing or by solvent dewaxing. Because excessive aromatic saturation is not desired, the pressure for hydrotreatment (and optional dewaxing) can be 500 psig (˜3.4 MPa) to 1200 psig (˜8.2 MPa).
    Type: Application
    Filed: September 11, 2019
    Publication date: January 2, 2020
    Inventors: Benjamin S. Umansky, Keith K. Aldous, James W. Gleeson, Edward J. Blok, Richard A. Demmin
  • Publication number: 20190359899
    Abstract: Systems and methods are provided for hydroconversion of a heavy oil feed under slurry hydroprocessing conditions and/or solvent assisted hydroprocessing conditions. The systems and methods for slurry hydroconversion can include the use of a configuration that can allow for improved separation of catalyst particles from the slurry hydroprocessing effluent. In addition to allowing for improved catalyst recycle, an amount of fines in the slurry hydroconversion effluent can be reduced or minimized. This can facilitate further processing or handling of any “pitch” generated during the slurry hydroconversion. The systems and methods for solvent assisted hydroprocessing can include processing of a heavy oil feed in conjunction with a high solvency dispersive power crude.
    Type: Application
    Filed: August 6, 2019
    Publication date: November 28, 2019
    Inventors: Benjamin S. UMANSKY, Himanshu GUPTA, John D. NELSON, Cindy J. HUGHART, Jane C. CHENG, Steven W. LEVINE, Stephen H. BROWN, Todd P. MARUT, David C. DANKWORTH, Stuart L. SOLED, Thomas F. DEGNAN, JR., Robert J. FALKINER, Mohsen N. HARANDI, Juan D. HENAO, Lei ZHANG, Chuansheng BAI, Richard C. DOUGHERTY
  • Publication number: 20190338203
    Abstract: Systems and methods are provided for hydroconversion of a heavy oil feed under slurry hydroprocessing conditions and/or solvent assisted hydroprocessing conditions. The systems and methods for slurry hydroconversion can include the use of a configuration that can allow for improved separation of catalyst particles from the slurry hydroprocessing effluent. In addition to allowing for improved catalyst recycle, an amount of fines in the slurry hydroconversion effluent can be reduced or minimized. This can facilitate further processing or handling of any “pitch” generated during the slurry hydroconversion. The systems and methods for solvent assisted hydroprocessing can include processing of a heavy oil feed in conjunction with a high solvency dispersive power crude.
    Type: Application
    Filed: July 16, 2019
    Publication date: November 7, 2019
    Inventors: Benjamin S. UMANSKY, Himanshu GUPTA, John D. NELSON, Cindy J. HUGHART, Jane C. CHENG, Steven W. LEVINE, Stephen H. BROWN, Todd P. MARUT, David C. DANKWORTH, Stuart L. SOLED, Thomas F. DEGNAN, JR., Robert J. FALKINER, Mohsen N. HARANDI, Juan D. HENAO, Lei ZHANG, Chuansheng BAI, Richard C. DOUGHERTY
  • Patent number: 10450517
    Abstract: Systems and methods are provided for producing upgraded raffinate and extract products from lubricant boiling range feeds and/or other feeds having a boiling range of 400° F. (204° C.) to 1500° F. (816° C.) or more. The upgraded raffinate and/or extract products can have a reduced or minimized concentration of sulfur, nitrogen, metals, or a combination thereof. The reduced or minimized concentration of sulfur, nitrogen, and/or metals can be achieved by hydrotreating a suitable feed under hydrotreatment conditions corresponding to relatively low levels of feed conversion. Optionally, the feed can also dewaxed, such as by catalytic dewaxing or by solvent dewaxing. Because excessive aromatic saturation is not desired, the pressure for hydrotreatment (and optional dewaxing) can be 500 psig (˜3.4 MPa) to 1200 psig (˜8.2 MPa).
    Type: Grant
    Filed: May 19, 2017
    Date of Patent: October 22, 2019
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Benjamin S. Umansky, Keith K. Aldous, James W. Gleeson, Edward J. Blok, Richard A. Demmin
  • Patent number: 10414991
    Abstract: Systems and methods are provided for hydroconversion of a heavy oil feed under slurry hydroprocessing conditions and/or solvent assisted hydroprocessing conditions. The systems and methods for slurry hydroconversion can include the use of a configuration that can allow for improved separation of catalyst particles from the slurry hydroprocessing effluent. In addition to allowing for improved catalyst recycle, an amount of fines in the slurry hydroconversion effluent can be reduced or minimized. This can facilitate further processing or handling of any “pitch” generated during the slurry hydroconversion. The systems and methods for solvent assisted hydroprocessing can include processing of a heavy oil feed in conjunction with a high solvency dispersive power crude.
    Type: Grant
    Filed: June 19, 2017
    Date of Patent: September 17, 2019
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Benjamin S. Umansky, Himanshu Gupta, John D. Nelson, Cindy J. Hughart, Jane C. Cheng, Steven W. Levine, Stephen H. Brown, Todd P. Marut, David C. Dankworth, Stuart L. Soled, Thomas F. Degnan, Jr., Robert J. Falkiner, Mohsen N. Harandi, Juan D. Henao, Lei Zhang, Chuansheng Bai, Richard C. Dougherty
  • Publication number: 20180002617
    Abstract: Systems and methods are provided for hydroconversion of a heavy oil feed under slurry hydroprocessing conditions and/or solvent assisted hydroprocessing conditions. The systems and methods for slurry hydroconversion can include the use of a configuration that can allow for improved separation of catalyst particles from the slurry hydroprocessing effluent. In addition to allowing for improved catalyst recycle, an amount of fines in the slurry hydroconversion effluent can be reduced or minimized. This can facilitate further processing or handling of any “pitch” generated during the slurry hydroconversion. The systems and methods for solvent assisted hydroprocessing can include processing of a heavy oil feed in conjunction with a high solvency dispersive power crude.
    Type: Application
    Filed: June 19, 2017
    Publication date: January 4, 2018
    Inventors: Benjamin S. UMANSKY, Himanshu GUPTA, John D. NELSON, Cindy J. HUGHART, Jane C. CHENG, Steven W. LEVINE, Stephen H. BROWN, Todd P. MARUT, David C. DANKWORTH, Stuart L. SOLED, Thomas F. DEGNAN, JR., Robert J. FALKINER, Mohsen N. HARANDI, Juan D. HENAO, Lei ZHANG, Chuansheng BAI, Richard C. DOUGHERTY
  • Publication number: 20170342330
    Abstract: Systems and methods are provided for producing upgraded raffinate and extract products from lubricant boiling range feeds and/or other feeds having a boiling range of 400° F. (204° C.) to 1500° F. (816° C.) or more. The upgraded raffinate and/or extract products can have a reduced or minimized concentration of sulfur, nitrogen, metals, or a combination thereof. The reduced or minimized concentration of sulfur, nitrogen, and/or metals can be achieved by hydrotreating a suitable feed under hydrotreatment conditions corresponding to relatively low levels of feed conversion. Optionally, the feed can also dewaxed, such as by catalytic dewaxing or by solvent dewaxing. Because excessive aromatic saturation is not desired, the pressure for hydrotreatment (and optional dewaxing) can be 500 psig (˜3.4 MPa) to 1200 psig (˜8.2 MPa).
    Type: Application
    Filed: May 19, 2017
    Publication date: November 30, 2017
    Inventors: Benjamin S. Umansky, Keith K. Aldous, James W. Gleeson, Edward J. Blok, Richard A. Demmin
  • Patent number: 9809764
    Abstract: A process for producing high yields of higher quality (API Group II, Group III?) lubricating oil basestock fractions which allows the production of two or more types of high quality lubes in continuous mode (no blocked operation mode) without transition times and feed or intermediate product tankage segregation. Two consecutive hydroprocessing steps are used: the first step processes a wide cut feed at a severity needed to match heavy oil lube properties. The second step hydroprocesses a light oil after fractionation of the liquid product from the first step at a severity higher than for the heavy oil fraction. The two hydroprocessing steps will normally be carried out in separate reactors but they may be combined in a single reactor which allows for the two fractions to be processed with different degrees of severity.
    Type: Grant
    Filed: March 10, 2016
    Date of Patent: November 7, 2017
    Assignee: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Benjamin S. Umansky, Teck-Mui Hoo, Richard A. Demmin, Fengrong Chen, James W. Gleeson, Suisheng M. Dou, Tomas R. Melli, Michael C. Clark
  • Publication number: 20170253815
    Abstract: Systems and methods are provided for detecting abnormal temperature conditions within a fixed bed reactor. In a fixed bed reactor, a hydrocarbon (or hydrocarbon-like) feedstock can be exposed to one or more types of catalyst particles at elevated temperatures and/or pressures. In addition to the one or more types of catalyst particles, a plurality of temperature-sensor structures can be included in a catalyst bed and/or a coating including one or more temperature-sensor structures can be provided on an interior wall or other interior surface in the reactor. The temperature-sensor structures can have a threshold temperature at which the temperature-sensor structure changes to allow introduction and/or release of a detectable substance.
    Type: Application
    Filed: February 16, 2017
    Publication date: September 7, 2017
    Inventors: Dana W. Nouri, Hans G. Korsten, Benjamin S. Umansky
  • Patent number: 9746434
    Abstract: Systems and methods for determining the flow distribution of a fluid through a component with a sensing cable including an optical fiber sensor array aligned with a heating element disposed in the component. An excitation source is configured to propagate at least one heat pulse through the heating element along at least a portion of the sensing cable to affect an exchange of thermal energy between the heating element and the fluid exposed to the sensing cable. An optical signal is adapted to receive a signal from each of a plurality of sensor locations and measure a temperature profile corresponding to the heat pulse at the sensor locations. A control unit is configured to determine a flow of the fluid by determining one or more properties of the fluid exposed to the sensing cable at each of the plurality of sensor locations based on the temperature profile corresponding thereto.
    Type: Grant
    Filed: March 27, 2014
    Date of Patent: August 29, 2017
    Assignee: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Yibing Zhang, Limin Song, Geoff Keiser, Michael L. Hergenrother, Berne K. Stober, Patricia H. Kalamaras, Benjamin S. Umansky
  • Patent number: 9493718
    Abstract: Hydrocarbon feeds can be hydrotreated in a continuous gas-phase environment and then dewaxed in a liquid-continuous reactor. The liquid-continuous reactor can advantageously be operated in a manner that avoids the need for a hydrogen recycle loop. A contaminant gas can be added to the hydrogen input for the liquid-continuous reactor to modify the hydrogen consumption in the reactor.
    Type: Grant
    Filed: June 24, 2011
    Date of Patent: November 15, 2016
    Assignee: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Richard C. Dougherty, Michael A. Hayes, Benjamin S. Umansky, William E. Lewis
  • Publication number: 20160298038
    Abstract: A process for producing high yields of higher quality (API Group II, Group III?) lubricating oil basestock fractions which allows the production of two or more types of high quality lubes in continuous mode (no blocked operation mode) without transition times and feed or intermediate product tankage segregation. Two consecutive hydroprocessing steps are used: the first step processes a wide cut feed at a severity needed to match heavy oil lube properties. The second step hydroprocesses a light oil after fractionation of the liquid product from the first step at a severity higher than for the heavy oil fraction. The two hydroprocessing steps will normally be carried out in separate reactors but they may be combined in a single reactor which allows for the two fractions to be processed with different degrees of severity.
    Type: Application
    Filed: March 10, 2016
    Publication date: October 13, 2016
    Inventors: Benjamin S. Umansky, Teck-Mui Hoo, Richard A. Demmin, Fengrong Chen, James W. Gleeson, Suisheng M. Dou, Tomas R. Melli, Michael C. Clark
  • Patent number: 9415385
    Abstract: Methods are provided for liquid phase activation of dewaxing and/or hydrofinishing catalysts that include a molecular sieve or other acidic crystalline support. The methods are compatible with activating the catalysts as part of a catalyst system that also includes a hydrotreating catalyst.
    Type: Grant
    Filed: November 15, 2012
    Date of Patent: August 16, 2016
    Assignee: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Terry E. Helton, Benjamin S. Umansky, William J. Tracy, III, Stephen J. McCarthy, Timothy L. Hilbert, Mohan Kalyanaraman, Christopher G. Oliveri
  • Publication number: 20160194566
    Abstract: Methods are provided for producing lubricant base oils using a combination of catalytic and solvent processing. By using a combination of catalytic processing for feed conversion and dewaxing while using solvent processing for removal of aromatics, Group II and Group III lubricant base oils can be produced using low pressure catalytic processes.
    Type: Application
    Filed: December 28, 2015
    Publication date: July 7, 2016
    Inventors: Teck-Mui Hoo, Nicole D. Vaughn, Benjamin S. Umansky, James W. Gleeson, Jeenok T. Kim, Carlos N. Lopez, Jean P. Andre, Lei Zhang, Bal K. Kaul
  • Patent number: 9290703
    Abstract: A diesel fuel product with beneficial cold flow properties can be produced. A suitable feedstock for forming a diesel boiling range product can be hydrotreated to have a sulfur content of at least about 100 wppm and then dewaxed. This two stage process can allow for production of an arctic or winter diesel without use of high pressures. Optionally, a divided wall column fractionator can be used to allow a single separation stage to handle the effluent from both the hydroprocessing and the dewaxing stages.
    Type: Grant
    Filed: April 23, 2010
    Date of Patent: March 22, 2016
    Assignee: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Benjamin S. Umansky, Mohan Kalyanaraman, Timothy L. Hilbert, Carlos N. Lopez, Lei Zhang
  • Patent number: 9267083
    Abstract: Processes are provided herein for producing naphtha boiling range products with a desired sulfur content by reducing the mercaptan content of the naphtha boiling range products after the products exit a hydroprocessing stage. Due to mercaptan reversion, naphtha boiling range products that contain even small amounts of olefins can have a higher than expected sulfur content after hydroprocessing. In order to reduce or mitigate the effects of mercaptan reversion, microchannel reactors (or microreactors) can be placed in a processing system downstream of a reactor that produces a low sulfur naphtha product. The microreactors can include a coating of metals that have activity for hydrodesulfurization. By passing at least a portion of the naphtha product through the downstream microreactors, the mercaptans formed by reversion reactions can be reduced or eliminated, resulting in a naphtha product with possessing a very low sulfur content.
    Type: Grant
    Filed: December 3, 2013
    Date of Patent: February 23, 2016
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Benjamin S. Umansky, Charles R. Bolz, Anjaneya S. Kovvali, Carlos N. Lopez, Rathna P. Davuluri