Patents by Inventor Benjamin Saarloos

Benjamin Saarloos has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11047381
    Abstract: The subject invention pertains to a method and apparatus for an orientation independent compressor. The subject compressor can be part of a vapor compression cycle system, and can use one or more of a variety of working fluids, including, but not limited to, refrigerants such as r-134a, r-22, CO2, and NH3. Embodiments of the compressor can utilize positive displacement apparatus to compress the vapor. In a specific embodiment, the compressor can incorporate an oil-lubricated rotary lobed type positive displacement compressor. In a further specific embodiment, the working fluid vapor can be a refrigerant, such as r-134a, incorporating entrained oil, such as miscible lubricating oils. An example of such a miscible lubricating oil that can be used is polyester (POE) oil.
    Type: Grant
    Filed: November 17, 2009
    Date of Patent: June 29, 2021
    Assignee: RINI TECHNOLOGIES, INC.
    Inventors: Daniel P. Rini, Benjamin Saarloos, Brian Zinck, Nick Williams, James Hughes
  • Patent number: 7921664
    Abstract: The subject invention pertains to a method and apparatus for high heat flux heat transfer. The subject invention can be utilized to transfer heat from a heat source to a coolant such that the transferred heat can be effectively transported to another location. Examples of heat sources from which heat can be transferred from include, for example, fluids and surfaces. The coolant to which the heat is transferred can be sprayed onto a surface which is in thermal contact with the heat source, such that the coolant sprayed onto the surface in thermal contact with the heat absorbs heat from the surface and carries the absorbed heat away as the coolant leaves the surface. The surface can be, for example, the surface of an interface plate in thermal contact with the heat source or a surface integral with the heat source. The coolant sprayed onto the surface can initially be a liquid and remain a liquid after absorbing the heat, or can in part or in whole be converted to a gas or vapor after absorbing the heat.
    Type: Grant
    Filed: March 11, 2008
    Date of Patent: April 12, 2011
    Assignee: Rini Technologies, Inc.
    Inventors: Daniel P. Rini, H. Randolph Anderson, Jayanta Sankar Kapat, Louis Chow, Bradley G. Carman, Benjamin A. Saarloos
  • Publication number: 20100132382
    Abstract: The subject invention pertains to a method and apparatus for an orientation independent compressor. The subject compressor can be part of a vapor compression cycle system, and can use one or more of a variety of working fluids, including, but not limited to, refrigerants such as r-134a, r-22, CO2, and NH3. Embodiments of the compressor can utilize positive displacement means to compress the vapor. In a specific embodiment, the compressor can incorporate an oil-lubricated rotary lobed type positive displacement compressor. In a further specific embodiment, the working fluid can be a refrigerant, such as r-134a, incorporating entrained oil, such as miscible lubricating oils. An example of such a miscible lubricating oil that can be used is polyester (POE) oil.
    Type: Application
    Filed: November 17, 2009
    Publication date: June 3, 2010
    Applicant: Rini Technologies, Inc.
    Inventors: Daniel P. Rini, Benjamin Saarloos, Brian Zinck, Nick Williams, James Hughes
  • Patent number: 7654100
    Abstract: The subject invention pertains to a method and apparatus for high heat flux heat transfer. The subject invention can be utilized to transfer heat from a heat source to a coolant such that the transferred heat can be effectively transported to another location. Examples of heat sources from which heat can be transferred from include, for example, fluids and surfaces. The coolant to which the heat is transferred can be sprayed onto a surface which is in thermal contact with the heat source, such that the coolant sprayed onto the surface in thermal contact with the heat absorbs heat from the surface and carries the absorbed heat away as the coolant leaves the surface. The surface can be, for example, the surface of an interface plate in thermal contact with the heat source or a surface integral with the heat source. The coolant sprayed onto the surface can initially be a liquid and remain a liquid after absorbing the heat, or can in part or in whole be converted to a gas or vapor after absorbing the heat.
    Type: Grant
    Filed: December 16, 2005
    Date of Patent: February 2, 2010
    Assignee: Rini Technologies, Inc.
    Inventors: Daniel P. Rini, H. Randolph Anderson, Jayanta Sankar Kapat, Louis Chow, Bradley G. Carman, Benjamin A. Saarloos
  • Publication number: 20090294097
    Abstract: Embodiments of the subject invention pertain to a method and apparatus for heating or cooling. Embodiments relate to a method and apparatus utilizing a vapor compression cycle to accomplish active heating or cooling. In a specific embodiment, the subject invention relates to a lightweight, compact, reliable, and efficient heating or cooling system for underwater applications. The subject system can provide heating or cooling stress relief to individuals operating under, for example, hazardous conditions, or in low temperature underwater environments where passive protective clothing provides insufficient mitigation of cooling stress. Further embodiments can be utilized to provide heat stress relief to users who are working in thermally encapsulated ensembles that hinder the body's natural ability to expel heat. The subject system can be utilized in other applications that can benefit from this type of heating or cooling system.
    Type: Application
    Filed: February 6, 2009
    Publication date: December 3, 2009
    Applicant: Rini Technologies, Inc.
    Inventors: Daniel P. Rini, Benjamin A. Saarloos, Jose Mauricio Recio, James R. Hughes
  • Publication number: 20080210406
    Abstract: The subject invention pertains to a method and apparatus for high heat flux heat transfer. The subject invention can be utilized to transfer heat from a heat source to a coolant such that the transferred heat can be effectively transported to another location. Examples of heat sources from which heat can be transferred from include, for example, fluids and surfaces. The coolant to which the heat is transferred can be sprayed onto a surface which is in thermal contact with the heat source, such that the coolant sprayed onto the surface in thermal contact with the heat absorbs heat from the surface and carries the absorbed heat away as the coolant leaves the surface. The surface can be, for example, the surface of an interface plate in thermal contact with the heat source or a surface integral with the heat source. The coolant sprayed onto the surface can initially be a liquid and remain a liquid after absorbing the heat, or can in part or in whole be converted to a gas or vapor after absorbing the heat.
    Type: Application
    Filed: March 11, 2008
    Publication date: September 4, 2008
    Inventors: Daniel P. Rini, H. Randolph Anderson, Jayanta Sankar Kapat, Louis Chow, Bradley G. Carman, Benjamin A. Saarloos
  • Publication number: 20060117782
    Abstract: The subject invention pertains to a method and apparatus for high heat flux heat transfer. The subject invention can be utilized to transfer heat from a heat source to a coolant such that the transferred heat can be effectively transported to another location. Examples of heat sources from which heat can be transferred from include, for example, fluids and surfaces. The coolant to which the heat is transferred can be sprayed onto a surface which is in thermal contact with the heat source, such that the coolant sprayed onto the surface in thermal contact with the heat absorbs heat from the surface and carries the absorbed heat away as the coolant leaves the surface. The surface can be, for example, the surface of an interface plate in thermal contact with the heat source or a surface integral with the heat source. The coolant sprayed onto the surface can initially be a liquid and remain a liquid after absorbing the heat, or can in part or in whole be converted to a gas or vapor after absorbing the heat.
    Type: Application
    Filed: December 16, 2005
    Publication date: June 8, 2006
    Inventors: Daniel Rini, H. Anderson, Jayanta Kapat, Louis Chow, Bradley Carman, Benjamin Saarloos