Patents by Inventor Benjamin Schubert

Benjamin Schubert has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220148606
    Abstract: An apparatus for generating an enhanced signal from an input signal, wherein the enhanced signal has spectral values for an enhancement spectral region, the spectral values for the enhancement spectral regions not being contained in the input signal, includes a mapper for mapping a source spectral region of the input signal to a target region in the enhancement spectral region, the source spectral region including a noise-filling region; and a noise filler configured for generating first noise values for the noise-filling region in the source spectral region of the input signal and for generating second noise values for a noise region in the target region, wherein the second noise values are decorrelated from the first noise values or for generating second noise values for a noise region in the target region, wherein the second noise values are decorrelated from first noise values in the source region.
    Type: Application
    Filed: January 19, 2022
    Publication date: May 12, 2022
    Inventors: Sascha Disch, Ralf Geiger, Andreas Niedermeier, Matthias Neusinger, Konstantin Schmidt, Stephan Wilde, Benjamin Schubert, Christian Neukam
  • Publication number: 20220139406
    Abstract: Audio encoder for encoding a multichannel signal is shown. The audio encoder includes a downmixer for downmixing the multichannel signal to obtain a downmix signal, a linear prediction domain core encoder for encoding the downmix signal, wherein the downmix signal has a low band and a high band, wherein the linear prediction domain core encoder is configured to apply a bandwidth extension processing for parametrically encoding the high band, a filterbank for generating a spectral representation of the multichannel signal, and a joint multichannel encoder configured to process the spectral representation including the low band and the high band of the multichannel signal to generate multichannel information.
    Type: Application
    Filed: January 13, 2022
    Publication date: May 5, 2022
    Inventors: Sascha DISCH, Guillaume FUCHS, Emmanuel RAVELLI, Christian NEUKAM, Konstantin SCHMIDT, Conrad BENNDORF, Andreas NIEDERMEIER, Benjamin SCHUBERT, Ralf GEIGER
  • Publication number: 20220093112
    Abstract: A schematic block diagram of an audio encoder for encoding a multichannel audio signal is shown. The audio encoder includes a linear prediction domain encoder, a frequency domain encoder, and a controller for switching between the linear prediction domain encoder and the frequency domain encoder. The controller is configured such that a portion of the multichannel signal is represented either by an encoded frame of the linear prediction domain encoder or by an encoded frame of the frequency domain encoder. The linear prediction domain encoder includes a downmixer for downmixing the multichannel signal to obtain a downmixed signal. The linear prediction domain encoder further includes a linear prediction domain core encoder for encoding the downmix signal and furthermore, the linear prediction domain encoder includes a first joint multichannel encoder for generating first multichannel information from the multichannel signal.
    Type: Application
    Filed: August 24, 2021
    Publication date: March 24, 2022
    Inventors: Sascha DISCH, Guillaume FUCHS, Emmanuel RAVELLI, Christian NEUKAM, Konstantin SCHMIDT, Conrad BENNDORF, Andreas NIEDERMEIER, Benjamin SCHUBERT, Ralf GEIGER
  • Publication number: 20220076685
    Abstract: An audio decoder for providing a decoded audio information on the basis of an encoded audio information includes a linear-prediction-domain decoder configured to provide a first decoded audio information on the basis of an audio frame encoded in a linear prediction domain, a frequency domain decoder configured to provide a second decoded audio information on the basis of an audio frame encoded in a frequency domain, and a transition processor. The transition processor is configured to obtain a zero-input-response of a linear predictive filtering, wherein an initial state of the linear predictive filtering is defined depending on the first decoded audio information and the second decoded audio information, and modify the second decoded audio information depending on the zero-input-response, to obtain a smooth transition between the first and the modified second decoded audio information.
    Type: Application
    Filed: September 20, 2021
    Publication date: March 10, 2022
    Applicant: Fraunhofer-Gesellschaft zur Foerderung der angewandten Forschung e.V.
    Inventors: Emmanuel Ravelli, Guillaume Fuchs, Sascha Disch, Markus Multrus, Grzegorz Pietrzyk, Benjamin Schubert
  • Patent number: 11264042
    Abstract: An apparatus for generating an enhanced signal from an input signal, wherein the enhanced signal has spectral values for an enhancement spectral region, the spectral values for the enhancement spectral regions not being contained in the input signal, includes a mapper for mapping a source spectral region of the input signal to a target region in the enhancement spectral region, the source spectral region including a noise-filling region; and a noise filler configured for generating first noise values for the noise-filling region in the source spectral region of the input signal and for generating second noise values for a noise region in the target region, wherein the second noise values are decorrelated from the first noise values or for generating second noise values for a noise region in the target region, wherein the second noise values are decorrelated from first noise values in the source region.
    Type: Grant
    Filed: November 21, 2019
    Date of Patent: March 1, 2022
    Inventors: Sascha Disch, Ralf Geiger, Andreas Niedermeier, Matthias Neusinger, Konstantin Schmidt, Stephan Wilde, Benjamin Schubert, Christian Neukam
  • Publication number: 20220051681
    Abstract: An audio encoder for encoding an audio signal includes: a first encoding processor for encoding a first audio signal portion in a frequency domain, wherein the first encoding processor includes: a time frequency converter for converting the first audio signal portion into a frequency domain representation having spectral lines up to a maximum frequency of the first audio signal portion; a spectral encoder for encoding the frequency domain representation; a second encoding processor for encoding a second different audio signal portion in the time domain; a cross-processor for calculating, from the encoded spectral representation of the first audio signal portion, initialization data of the second encoding processor, so that the second encoding processing is initialized to encode the second audio signal portion immediately following the first audio signal portion in time in the audio signal; a controller configured for analyzing the audio signal and for determining, which portion of the audio signal is the firs
    Type: Application
    Filed: November 1, 2021
    Publication date: February 17, 2022
    Inventors: Sascha DISCH, Martin DIETZ, Markus MULTRUS, Guillaume FUCHS, Emmanuel RAVELLI, Matthias NEUSINGER, Markus SCHNELL, Benjamin SCHUBERT, Bernhard GRILL
  • Patent number: 11238874
    Abstract: Audio encoder for encoding a multichannel signal is shown. The audio encoder includes a downmixer for downmixing the multichannel signal to obtain a downmix signal, a linear prediction domain core encoder for encoding the downmix signal, wherein the downmix signal has a low band and a high band, wherein the linear prediction domain core encoder is configured to apply a bandwidth extension processing for parametrically encoding the high band, a filterbank for generating a spectral representation of the multichannel signal, and a joint multichannel encoder configured to process the spectral representation including the low band and the high band of the multichannel signal to generate multichannel information.
    Type: Grant
    Filed: July 9, 2019
    Date of Patent: February 1, 2022
    Assignee: Fraunhofer-Gesellschaft zur Foerderung der angewandten Forschung e.V.
    Inventors: Sascha Disch, Guillaume Fuchs, Emmanuel Ravelli, Christian Neukam, Konstantin Schmidt, Conrad Benndorf, Andreas Niedermeier, Benjamin Schubert, Ralf Geiger
  • Patent number: 11170797
    Abstract: An audio decoder for providing a decoded audio information on the basis of an encoded audio information is disclosed. The audio decoder includes a linear-prediction-domain decoder configured to provide a first decoded audio information on the basis of an audio frame encoded in a linear prediction domain, a frequency domain decoder configured to provide a second decoded audio information on the basis of an audio frame encoded in a frequency domain, and a transition processor. The transition processor is configured to obtain a zero-input-response of a linear predictive filtering, wherein an initial state of the linear predictive filtering is defined depending on the first decoded audio information and the second decoded audio information, and modify the second decoded audio information depending on the zero-input-response, to obtain a smooth transition between the first and the modified second decoded audio information.
    Type: Grant
    Filed: May 31, 2019
    Date of Patent: November 9, 2021
    Assignee: Fraunhofer-Gesellschaft zur Foerderung der angewandten Forschung e.V.
    Inventors: Emmanuel Ravelli, Guillaume Fuchs, Sascha Disch, Markus Multrus, Grzegorz Pietrzyk, Benjamin Schubert
  • Patent number: 11127411
    Abstract: An audio decoder for providing a decoded audio information on the basis of an encoded audio information is disclosed. The audio decoder includes a linear-prediction-domain decoder configured to provide a first decoded audio information on the basis of an audio frame encoded in a linear prediction domain, a frequency domain decoder configured to provide a second decoded audio information on the basis of an audio frame encoded in a frequency domain, and a transition processor. The transition processor is configured to obtain a zero-input-response of a linear predictive filtering, wherein an initial state of the linear predictive filtering is defined depending on the first decoded audio information and the second decoded audio information, and modify the second decoded audio information depending on the zero-input-response, to obtain a smooth transition between the first and the modified second decoded audio information.
    Type: Grant
    Filed: May 31, 2019
    Date of Patent: September 21, 2021
    Assignee: Fraunhofer-Gesellschaft zur Foerderung der angewandten Forschung e.V.
    Inventors: Emmanuel Ravelli, Guillaume Fuchs, Sascha Disch, Markus Multrus, Grzegorz Pietrzyk, Benjamin Schubert
  • Publication number: 20210287689
    Abstract: An audio encoder for encoding an audio signal has: a first encoding processor for encoding a first audio signal portion in a frequency domain, having: a time frequency converter for converting the first audio signal portion into a frequency domain representation; an analyzer for analyzing the frequency domain representation to determine first spectral portions to be encoded with a first spectral resolution and second regions to be encoded with a second resolution; and a spectral encoder for encoding the first spectral portions with the first spectral resolution and encoding the second portions with the second resolution; a second encoding processor for encoding a second different audio signal portion in the time domain; a controller for analyzing and determining, which portion of the audio signal is the first audio signal portion encoded in the frequency domain and which portion is the second audio signal portion encoded in the time domain; and an encoded signal former for forming an encoded audio signal havi
    Type: Application
    Filed: June 1, 2021
    Publication date: September 16, 2021
    Inventors: Sascha DISCH, Martin DIETZ, Markus MULTRUS, Guillaume FUCHS, Emmanuel RAVELLI, Matthias NEUSINGER, Markus SCHNELL, Benjamin SCHUBERT, Bernhard GRILL
  • Patent number: 11107483
    Abstract: A schematic block diagram of an audio encoder for encoding a multichannel audio signal is shown. The audio encoder includes a linear prediction domain encoder, a frequency domain encoder, and a controller for switching between the linear prediction domain encoder and the frequency domain encoder. The controller is configured such that a portion of the multichannel signal is represented either by an encoded frame of the linear prediction domain encoder or by an encoded frame of the frequency domain encoder. The linear prediction domain encoder includes a downmixer for downmixing the multichannel signal to obtain a downmixed signal. The linear prediction domain encoder further includes a linear prediction domain core encoder for encoding the downmix signal and furthermore, the linear prediction domain encoder includes a first joint multichannel encoder for generating first multichannel information from the multichannel signal.
    Type: Grant
    Filed: August 31, 2020
    Date of Patent: August 31, 2021
    Assignee: Fraunhofer-Gesellschaft zur Foerderung der angewandten Forschung e.V.
    Inventors: Sascha Disch, Guillaume Fuchs, Emmanuel Ravelli, Christian Neukam, Konstantin Schmidt, Conrad Benndorf, Andreas Niedermeier, Benjamin Schubert, Ralf Geiger
  • Patent number: 11049508
    Abstract: An audio encoder for encoding an audio signal has: a first encoding processor for encoding a first audio signal portion in a frequency domain, having: a time frequency converter for converting the first audio signal portion into a frequency domain representation; an analyzer for analyzing the frequency domain representation to determine first spectral portions to be encoded with a first spectral resolution and second regions to be encoded with a second resolution; and a spectral encoder for encoding the first spectral portions with the first spectral resolution and encoding the second portions with the second resolution; a second encoding processor for encoding a second different audio signal portion in the time domain; a controller for analyzing and determining, which portion of the audio signal is the first audio signal portion encoded in the frequency domain and which portion is the second audio signal portion encoded in the time domain; and an encoded signal former for forming an encoded audio signal havi
    Type: Grant
    Filed: February 26, 2019
    Date of Patent: June 29, 2021
    Inventors: Sascha Disch, Martin Dietz, Markus Multrus, Guillaume Fuchs, Emmanuel Ravelli, Matthias Neusinger, Markus Schnell, Benjamin Schubert, Bernhard Grill
  • Patent number: 10984810
    Abstract: An audio decoder provides a decoded audio information on the basis of an encoded audio information including linear prediction coefficients (LPC) and includes a tilt adjuster to adjust a tilt of a noise using linear prediction coefficients of a current frame to acquire a tilt information and a noise inserter configured to add the noise to the current frame in dependence on the tilt information. Another audio decoder includes a noise level estimator to estimate a noise level for a current frame using a linear prediction coefficient of at least one previous frame to acquire a noise level information; and a noise inserter to add a noise to the current frame in dependence on the noise level information provided by the noise level estimator. Thus, side information about a background noise in the bit-stream may be omitted. Methods and computer programs serve a similar purpose.
    Type: Grant
    Filed: February 26, 2019
    Date of Patent: April 20, 2021
    Assignee: Fraunhofer-Gesellschaft zur Foerderung der angewandten Forschung e.V.
    Inventors: Guillaume Fuchs, Christian Helmrich, Manuel Jander, Benjamin Schubert, Yoshikazu Yokotani
  • Publication number: 20210104251
    Abstract: Described are an encoder for coding speech-like content and/or general audio content, wherein the encoder is configured to embed, at least in some frames, parameters in a bitstream, which parameters enhance a concealment in case an original frame is lost, corrupted or delayed, and a decoder for decoding speech-like content and/or general audio content, wherein the decoder is configured to use parameters which are sent later in time to enhance a concealment in case an original frame is lost, corrupted or delayed, as well as a method for encoding and a method for decoding.
    Type: Application
    Filed: December 18, 2020
    Publication date: April 8, 2021
    Inventors: Jérémie LECOMTE, Benjamin SCHUBERT, Michael SCHNABEL, Martin DIETZ
  • Publication number: 20210074307
    Abstract: An audio decoder provides a decoded audio information on the basis of an encoded audio information including linear prediction coefficients (LPC) and includes a tilt adjuster to adjust a tilt of a noise using linear prediction coefficients of a current frame to acquire a tilt information and a noise inserter configured to add the noise to the current frame in dependence on the tilt information. Another audio decoder includes a noise level estimator to estimate a noise level for a current frame using a linear prediction coefficient of at least one previous frame to acquire a noise level information; and a noise inserter to add a noise to the current frame in dependence on the noise level information provided by the noise level estimator. Thus, side information about a background noise in the bit-stream may be omitted. Methods and computer programs serve a similar purpose.
    Type: Application
    Filed: November 24, 2020
    Publication date: March 11, 2021
    Inventors: Guillaume FUCHS, Christian HELMRICH, Manuel JANDER, Benjamin SCHUBERT, Yoshikazu YOKOTANI
  • Publication number: 20210065726
    Abstract: An apparatus for generating an enhanced signal from an input signal, wherein the enhanced signal has spectral values for an enhancement spectral region, the spectral values for the enhancement spectral regions not being contained in the input signal, includes a mapper for mapping a source spectral region of the input signal to a target region in the enhancement spectral region, the source spectral region including a noise-filling region; and a noise filler configured for generating first noise values for the noise-filling region in the source spectral region of the input signal and for generating second noise values for a noise region in the target region, wherein the second noise values are decorrelated from the first noise values or for generating second noise values for a noise region in the target region, wherein the second noise values are decorrelated from first noise values in the source region.
    Type: Application
    Filed: November 13, 2020
    Publication date: March 4, 2021
    Inventors: Sascha Disch, Ralf Geiger, Andreas Niedermeier, Matthias Neusinger, Konstantin Schmidt, Stephan Wilde, Benjamin Schubert, Christian Neukam
  • Publication number: 20210035591
    Abstract: A method is described that estimates noise in an audio signal. An energy value for the audio signal is estimated and converted into the logarithmic domain. A noise level for the audio signal is estimated based on the converted energy value.
    Type: Application
    Filed: August 17, 2020
    Publication date: February 4, 2021
    Inventors: Benjamin SCHUBERT, Manuel JANDER, Anthony LOMBARD, Martin DIETZ, Markus MULTRUS
  • Publication number: 20210005210
    Abstract: An audio encoder for encoding an audio signal having a lower frequency band and an upper frequency band includes: a detector for detecting a peak spectral region in the upper frequency band of the audio signal; a shaper for shaping the lower frequency band using shaping information for the lower band and for shaping the upper frequency band using at least a portion of the shaping information for the lower band, wherein the shaper is configured to additionally attenuate spectral values in the detected peak spectral region in the upper frequency band; and a quantizer and coder stage for quantizing a shaped lower frequency band and a shaped upper frequency band and for entropy coding quantized spectral values from the shaped lower frequency band and the shaped upper frequency band.
    Type: Application
    Filed: September 17, 2020
    Publication date: January 7, 2021
    Inventors: Markus MULTRUS, Christian NEUKAM, Markus SCHNELL, Benjamin SCHUBERT
  • Patent number: 10885924
    Abstract: An apparatus for generating an enhanced signal from an input signal, wherein the enhanced signal has spectral values for an enhancement spectral region, the spectral values for the enhancement spectral regions not being contained in the input signal, includes a mapper for mapping a source spectral region of the input signal to a target region in the enhancement spectral region, the source spectral region including a noise-filling region; and a noise filler configured for generating first noise values for the noise-filling region in the source spectral region of the input signal and for generating second noise values for a noise region in the target region, wherein the second noise values are decorrelated from the first noise values or for generating second noise values for a noise region in the target region, wherein the second noise values are decorrelated from first noise values in the source region.
    Type: Grant
    Filed: June 12, 2019
    Date of Patent: January 5, 2021
    Inventors: Sascha Disch, Ralf Geiger, Andreas Niedermeier, Matthias Neusinger, Konstantin Schmidt, Stephan Wilde, Benjamin Schubert, Christian Neukam
  • Patent number: 10878830
    Abstract: Described are an encoder for coding speech-like content and/or general audio content, wherein the encoder is configured to embed, at least in some frames, parameters in a bitstream, which parameters enhance a concealment in case an original frame is lost, corrupted or delayed, and a decoder for decoding speech-like content and/or general audio content, wherein the decoder is configured to use parameters which are sent later in time to enhance a concealment in case an original frame is lost, corrupted or delayed, as well as a method for encoding and a method for decoding.
    Type: Grant
    Filed: February 27, 2017
    Date of Patent: December 29, 2020
    Assignee: Fraunhofer-Gesellschaft zur Foerderung der angewandten Forschung e.V.
    Inventors: Jérémie Lecomte, Benjamin Schubert, Michael Schnabel, Martin Dietz