Patents by Inventor Benjamin Siepser

Benjamin Siepser has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11877825
    Abstract: An exemplary system includes a processor, a wearable device comprising a plurality of slots, and a first module including a plurality of detectors and a module control circuit. The processor is configured to successively transmit, to each slot of the plurality of slots, a command to enable a respective module located in each slot. The processor is further configured to determine, based on an acknowledgment received from the module control circuit, that the first module is enabled and located in a first slot, and to successively transmit, based on the determining that the first module is enabled and located in the first slot, a plurality of detector address identifiers. The module control circuit is configured to successively place the plurality of detectors into an enumeration mode in which each detector of the plurality of detectors is assigned a different detector address identifier of the plurality of detector address identifiers.
    Type: Grant
    Filed: March 16, 2021
    Date of Patent: January 23, 2024
    Assignee: HI LLC
    Inventors: Benjamin Siepser, Sangyong Park, Sebastian Sorgenfrei, Jacob Dahle, Ryan Field, Alex Borisevich, Milin J. Patel
  • Patent number: 11733320
    Abstract: An exemplary controller may include a single clock source configured to generate a single clock signal used to drive one or more components within a plurality of magnetometers and a plurality of differential signal measurement circuits configured to measure current output by a photodetector of each of the plurality of magnetometers.
    Type: Grant
    Filed: August 26, 2021
    Date of Patent: August 22, 2023
    Assignee: HI LLC
    Inventors: Stephen Garber, Jerry Leung, Ethan Pratt, Hooman Mohseni, Jamu Alford, Dakota Blue Decker, Jeffery Kang Gormley, Michael Henninger, Scott Michael Homan, Teague Lasser, Micah Ledbetter, Scott Jeremy Seidman, Benjamin Siepser
  • Patent number: 11698419
    Abstract: An exemplary wearable sensor unit includes 1) a magnetometer comprising a vapor cell comprising an input window and containing an alkali metal, and a light source configured to output light that passes through the input window and into the vapor cell along a transit path, and 2) a temperature control circuit external to the vapor cell and configured to create a temperature gradient within the vapor cell, the temperature gradient configured to concentrate the alkali metal within the vapor cell away from the transit path of the light.
    Type: Grant
    Filed: April 30, 2020
    Date of Patent: July 11, 2023
    Assignee: HI LLC
    Inventors: Stephen Garber, Ethan Pratt, Jeffery Kang Gormley, Scott Michael Homan, Scott Jeremy Seidman, Dakota Blue Decker, Jamu Alford, Michael Henninger, Teague Lasser, Micah Ledbetter, Jerry Leung, Hooman Mohseni, Benjamin Siepser
  • Patent number: 11525869
    Abstract: An exemplary magnetic field measurement system includes a wearable sensor unit that includes a magnetometer and a twisted pair cable interface assembly electrically connected to the magnetometer.
    Type: Grant
    Filed: August 26, 2021
    Date of Patent: December 13, 2022
    Assignee: HI LLC
    Inventors: Stephen Garber, Jamu Alford, Michael Henninger, Jeffery Kang Gormley, Dakota Blue Decker, Scott Michael Homan, Teague Lasser, Micah Ledbetter, Jerry Leung, Hooman Mohseni, Ethan Pratt, Scott Jeremy Seidman, Benjamin Siepser
  • Patent number: 11506730
    Abstract: A magnetic field measurement system includes a wearable device having a plurality of wearable sensor units. Each wearable sensor unit includes a plurality of magnetometers and a magnetic field generator configured to generate a compensation magnetic field configured to actively shield the plurality magnetometers from ambient background magnetic fields. A strength of a fringe magnetic field generated by the magnetic field generator of each of the wearable sensor units is less than a predetermined value at the plurality of magnetometers of each wearable sensor unit included in the plurality of wearable sensor units.
    Type: Grant
    Filed: April 30, 2020
    Date of Patent: November 22, 2022
    Assignee: HI LLC
    Inventors: Jamu Alford, Michael Henninger, Stephen Garber, Jeffery Kang Gormley, Dakota Blue Decker, Scott Michael Homan, Teague Lasser, Micah Ledbetter, Jerry Leung, Hooman Mohseni, Ethan Pratt, Scott Jeremy Seidman, Benjamin Siepser
  • Patent number: 11293999
    Abstract: A magnetic field generator includes a first planar substrate, a second planar substrate positioned opposite to the first planar substrate and separated from the first planar substrate by a gap, a first wiring set on the first planar substrate, a second wiring set on the second planar substrate, and one or more interconnects between the first planar substrate and the second planar substrate. The one or more interconnects electrically connect the first wiring set with the second wiring set to form a continuous electrical path. The continuous electrical path forms a conductive winding configured to generate, when supplied with a drive current, a first component of a compensation magnetic field configured to actively shield a magnetic field sensing region located in the gap from ambient background magnetic fields along a first axis that is substantially parallel to the first planar substrate and the second planar substrate.
    Type: Grant
    Filed: April 30, 2020
    Date of Patent: April 5, 2022
    Assignee: HI LLC
    Inventors: Jamu Alford, Michael Henninger, Stephen Garber, Jeffery Kang Gormley, Dakota Blue Decker, Scott Michael Homan, Teague Lasser, Micah Ledbetter, Jerry Leung, Hooman Mohseni, Ethan Pratt, Scott Jeremy Seidman, Benjamin Siepser
  • Publication number: 20210389390
    Abstract: An exemplary magnetic field measurement system includes a wearable sensor unit that includes a magnetometer and a twisted pair cable interface assembly electrically connected to the magnetometer.
    Type: Application
    Filed: August 26, 2021
    Publication date: December 16, 2021
    Inventors: Stephen Garber, Jamu Alford, Michael Henninger, Jeffery Kang Gormley, Dakota Blue Decker, Scott Michael Homan, Teague Lasser, Micah Ledbetter, Jerry Leung, Hooman Mohseni, Ethan Pratt, Scott Jeremy Seidman, Benjamin Siepser
  • Publication number: 20210389388
    Abstract: An exemplary magnetic field measurement system includes a wearable sensor unit and a single controller. The wearable sensor unit includes a plurality of magnetometers. The single controller is configured to generate a single clock signal and use the single clock signal to drive one or more components within the magnetometers.
    Type: Application
    Filed: August 26, 2021
    Publication date: December 16, 2021
    Inventors: Stephen Garber, Teague Lasser, Benjamin Siepser, Jamu Alford, Dakota Blue Decker, Jeffery Kang Gormley, Michael Henninger, Scott Michael Homan, Micah Ledbetter, Jerry Leung, Hooman Mohseni, Ethan Pratt, Scott Jeremy Seidman
  • Publication number: 20210389389
    Abstract: An exemplary controller may include a single clock source configured to generate a single clock signal used to drive one or more components within a plurality of magnetometers and a plurality of differential signal measurement circuits configured to measure current output by a photodetector of each of the plurality of magnetometers.
    Type: Application
    Filed: August 26, 2021
    Publication date: December 16, 2021
    Inventors: Stephen Garber, Jerry Leung, Ethan Pratt, Hooman Mohseni, Jamu Alford, Dakota Blue Decker, Jeffery Kang Gormley, Michael Henninger, Scott Michael Homan, Teague Lasser, Micah Ledbetter, Scott Jeremy Seidman, Benjamin Siepser
  • Patent number: 11131725
    Abstract: An exemplary magnetic field measurement system includes a wearable sensor unit that includes a magnetometer, a magnetic field generator configured to generate a compensation magnetic field configured to actively shield the magnetometer from ambient background magnetic fields, a twisted pair cable interface assembly electrically connected to the magnetometer, and a coaxial cable interface assembly electrically connected to the magnetic field generator.
    Type: Grant
    Filed: April 30, 2020
    Date of Patent: September 28, 2021
    Assignee: HI LLC
    Inventors: Stephen Garber, Jamu Alford, Michael Henninger, Jeffery Kang Gormley, Dakota Blue Decker, Scott Michael Homan, Teague Lasser, Micah Ledbetter, Jerry Leung, Hooman Mohseni, Ethan Pratt, Scott Jeremy Seidman, Benjamin Siepser
  • Patent number: 11131724
    Abstract: An exemplary magnetic field measurement system includes a wearable sensor unit and a controller. The wearable sensor unit includes 1) a magnetometer comprising a photodetector and 2) a magnetic field generator configured to generate a compensation magnetic field configured to actively shield the magnetometer from ambient background magnetic fields. The controller is configured to interface with the magnetometer and the magnetic field generator and includes a differential signal measurement circuit configured to measure current output by the photodetector.
    Type: Grant
    Filed: April 30, 2020
    Date of Patent: September 28, 2021
    Assignee: HI LLC
    Inventors: Stephen Garber, Jerry Leung, Ethan Pratt, Hooman Mohseni, Jamu Alford, Dakota Blue Decker, Jeffery Kang Gormley, Michael Henninger, Scott Michael Homan, Teague Lasser, Micah Ledbetter, Scott Jeremy Seidman, Benjamin Siepser
  • Patent number: 11131723
    Abstract: An exemplary magnetic field measurement system includes a wearable sensor unit and a single controller. The wearable sensor unit includes a plurality of magnetometers and a magnetic field generator configured to generate a compensation magnetic field configured to actively shield the magnetometers from ambient background magnetic fields. The single controller is configured to interface with the magnetometers and the magnetic field generator.
    Type: Grant
    Filed: April 30, 2020
    Date of Patent: September 28, 2021
    Assignee: HI LLC
    Inventors: Stephen Garber, Teague Lasser, Benjamin Siepser, Jamu Alford, Dakota Blue Decker, Jeffery Kang Gormley, Michael Henninger, Scott Michael Homan, Micah Ledbetter, Jerry Leung, Hooman Mohseni, Ethan Pratt, Scott Jeremy Seidman
  • Publication number: 20210294884
    Abstract: An authentication system comprises a brain-computer interface (BCI) configured for detecting neural activity in a brain of a subject in response to the subject performing a repeatable mental task, and outputting neural data representative of the detected neural activity. The authentication system further comprises a computer configured for acquiring the neural data output by the BCI while the subject is performing the repeatable mental task, and generating an authorization request containing the neural data. The authentication system further comprises an authentication processor configured for acquiring the authorization request containing the neural data from the computer, authenticating the subject based on the acquired authorization request, and sending an authorization token to the computer.
    Type: Application
    Filed: March 16, 2021
    Publication date: September 23, 2021
    Applicant: HI LLC
    Inventors: Teague Lasser, Gabriel Lerner, Benjamin Siepser, Jamu Alford, Julian Kates-Harbeck, Bryan Johnson
  • Publication number: 20210290065
    Abstract: An exemplary system includes a processor, a wearable device comprising a plurality of slots, and a first module including a plurality of detectors and a module control circuit. The processor is configured to successively transmit, to each slot of the plurality of slots, a command to enable a respective module located in each slot. The processor is further configured to determine, based on an acknowledgment received from the module control circuit, that the first module is enabled and located in a first slot, and to successively transmit, based on the determining that the first module is enabled and located in the first slot, a plurality of detector address identifiers. The module control circuit is configured to successively place the plurality of detectors into an enumeration mode in which each detector of the plurality of detectors is assigned a different detector address identifier of the plurality of detector address identifiers.
    Type: Application
    Filed: March 16, 2021
    Publication date: September 23, 2021
    Inventors: Benjamin Siepser, Sangyong Park, Sebastian Sorgenfrei, Jacob Dahle, Ryan Field, Alex Borisevich, Milin J. Patel
  • Publication number: 20210244329
    Abstract: An actuated magnetic field is generated at a plurality of distinct frequencies that at least partially cancels an outside magnetic field at the plurality of distinct frequencies, thereby yielding a total residual magnetic field. The total residual magnetic field is coarsely detected and a plurality of coarse error signals are respectively output. The total residual magnetic field is finely detected and a plurality of fine error signals are respectively output. The actuated magnetic field is controlled respectively at the plurality of distinct frequencies at least partially based on at least one of the plurality of coarse error signals, and finely controlled respectively at the plurality of distinct frequencies at least partially based on at least one of the plurality of fine error signals.
    Type: Application
    Filed: January 27, 2021
    Publication date: August 12, 2021
    Applicant: HI LLC
    Inventors: Micah Ledbetter, Ricardo Jimenez-Martinez, Julian Kates-Harbeck, Benjamin Siepser, Benjamin Shapiro
  • Publication number: 20200348369
    Abstract: An exemplary magnetic field measurement system includes a wearable sensor unit and a single controller. The wearable sensor unit includes a plurality of magnetometers and a magnetic field generator configured to generate a compensation magnetic field configured to actively shield the magnetometers from ambient background magnetic fields. The single controller is configured to interface with the magnetometers and the magnetic field generator.
    Type: Application
    Filed: April 30, 2020
    Publication date: November 5, 2020
    Inventors: Stephen Garber, Teague Lasser, Benjamin Siepser, Jamu Alford, Dakota Blue Decker, Jeffery Kang Gormley, Michael Henninger, Scott Michael Homan, Micah Ledbetter, Jerry Leung, Hooman Mohseni, Ethan Pratt, Scott Jeremy Seidman
  • Publication number: 20200348378
    Abstract: A magnetic field measurement system includes a wearable device having a plurality of wearable sensor units. Each wearable sensor unit includes a plurality of magnetometers and a magnetic field generator configured to generate a compensation magnetic field configured to actively shield the plurality magnetometers from ambient background magnetic fields. A strength of a fringe magnetic field generated by the magnetic field generator of each of the wearable sensor units is less than a predetermined value at the plurality of magnetometers of each wearable sensor unit included in the plurality of wearable sensor units.
    Type: Application
    Filed: April 30, 2020
    Publication date: November 5, 2020
    Inventors: Jamu Alford, Michael Henninger, Stephen Garber, Jeffery Kang Gormley, Dakota Blue Decker, Scott Michael Homan, Teague Lasser, Micah Ledbetter, Jerry Leung, Hooman Mohseni, Ethan Pratt, Scott Jeremy Seidman, Benjamin Siepser
  • Publication number: 20200348377
    Abstract: A magnetic field generator includes a first planar substrate, a second planar substrate positioned opposite to the first planar substrate and separated from the first planar substrate by a gap, a first wiring set on the first planar substrate, a second wiring set on the second planar substrate, and one or more interconnects between the first planar substrate and the second planar substrate. The one or more interconnects electrically connect the first wiring set with the second wiring set to form a continuous electrical path. The continuous electrical path forms a conductive winding configured to generate, when supplied with a drive current, a first component of a compensation magnetic field configured to actively shield a magnetic field sensing region located in the gap from ambient background magnetic fields along a first axis that is substantially parallel to the first planar substrate and the second planar substrate.
    Type: Application
    Filed: April 30, 2020
    Publication date: November 5, 2020
    Inventors: Jamu Alford, Michael Henninger, Stephen Garber, Jeffery Kang Gormley, Dakota Blue Decker, Scott Michael Homan, Teague Lasser, Micah Ledbetter, Jerry Leung, Hooman Mohseni, Ethan Pratt, Scott Jeremy Seidman, Benjamin Siepser
  • Publication number: 20200345259
    Abstract: An exemplary wearable sensor unit includes 1) a magnetometer comprising a vapor cell comprising an input window and containing an alkali metal, and a light source configured to output light that passes through the input window and into the vapor cell along a transit path, and 2) a temperature control circuit external to the vapor cell and configured to create a temperature gradient within the vapor cell, the temperature gradient configured to concentrate the alkali metal within the vapor cell away from the transit path of the light.
    Type: Application
    Filed: April 30, 2020
    Publication date: November 5, 2020
    Inventors: Stephen Garber, Ethan Pratt, Jeffery Kang Gormley, Scott Michael Homan, Scott Jeremy Seidman, Dakota Blue Decker, Jamu Alford, Michael Henninger, Teague Lasser, Micah Ledbetter, Jerry Leung, Hooman Mohseni, Benjamin Siepser
  • Publication number: 20200350106
    Abstract: A magnetic field generator includes a plurality of conductive windings comprising a first conductive winding arranged in a first plane and a second conductive winding arranged in a second plane that is substantially parallel to the first plane. The plurality of conductive windings are configured to generate, when supplied with a drive current, a first component of a compensation magnetic field. The first component of the compensation magnetic field is configured to actively shield a magnetic field sensing region located between the first conductive winding and the second conductive winding from ambient background magnetic fields along a first axis that is substantially orthogonal to the first plane and the second plane.
    Type: Application
    Filed: April 30, 2020
    Publication date: November 5, 2020
    Inventors: Jamu Alford, Michael Henninger, Dakota Blue Decker, Stephen Garber, Jeffery Kang Gormley, Scott Michael Homan, Teague Lasser, Micah Ledbetter, Jerry Leung, Hooman Mohseni, Ethan Pratt, Scott Jeremy Seidman, Benjamin Siepser