Patents by Inventor Benjamin T. Sutton

Benjamin T. Sutton has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10531952
    Abstract: Medical devices and delivery systems for delivering medical devices to a target location within a subject. In some embodiments the medical devices can be locked in a fully deployed and locked configuration. In some embodiments the delivery systems are configured with a single actuator to control the movement of multiple components of the delivery system. In some embodiments the actuator controls the independent and dependent movement of multiple components of the delivery system.
    Type: Grant
    Filed: January 23, 2018
    Date of Patent: January 14, 2020
    Assignee: Boston Scientific Scimed, Inc.
    Inventors: David J. Paul, Benjamin T. Sutton, Brian K. McCollum, Brian D. Brandt, Emma Leung, Kenneth M. Martin, Amr Salahieh, Daniel K. Hildebrand
  • Patent number: 10426607
    Abstract: An apparatus for replacement a native heart valve is herein provided. The apparatus includes a replacement heart valve, an expandable anchor, and a plurality of rivets. The expandable anchor comprises a woven braid structure that surrounds at least a portion of the replacement heart valve and has a plurality of braid intersections. At least some of the braid intersections have rivets extending therethrough.
    Type: Grant
    Filed: August 6, 2015
    Date of Patent: October 1, 2019
    Assignee: BOSTON SCIENTIFIC SCIMED, INC.
    Inventors: Peter W. Gregg, Jianhua Yang, Jarad Waisblatt, Benjamin T. Sutton, Ali Salahieh
  • Patent number: 10258467
    Abstract: A guidewire system may include a guidewire having a relatively stiff proximal section and a relatively flexible distal section joined by a transition region, and a TAVI device slidably disposed on the guidewire. The guidewire may include an expandable element disposed about the transition region. The expandable element may be configured to expand from a collapsed configuration to an expanded configuration. The guidewire may include an expandable element disposed at the distal end. The distal section may be pre-configured to form more than one distal loop. A method of protecting an apex of a left ventricle during a TAVI procedure may include inserting a guidewire into the left ventricle, positioning a transition region adjacent the apex, expanding an expandable element such that the expandable element spans the apex, advancing a TAVI device distally over the guidewire to an aortic valve, and performing a TAVI procedure at the aortic valve.
    Type: Grant
    Filed: December 22, 2016
    Date of Patent: April 16, 2019
    Assignee: Boston Scientific Scimed Inc.
    Inventors: Dongming Hou, John Jianhua Chen, Robert Chang, Takashi H. Ino, Benjamin T. Sutton
  • Publication number: 20180214266
    Abstract: Medical devices and delivery systems for delivering medical devices to a target location within a subject. In some embodiments the medical devices can be locked in a fully deployed and locked configuration. In some embodiments the delivery systems are configured with a single actuator to control the movement of multiple components of the delivery system. In some embodiments the actuator controls the independent and dependent movement of multiple components of the delivery system.
    Type: Application
    Filed: January 23, 2018
    Publication date: August 2, 2018
    Applicant: BOSTON SCIENTIFIC SCIMED, INC.
    Inventors: David J. Paul, Benjamin T. Sutton, Brian K. McCollum, Brian D. Brandt, Emma Leung, Kenneth M. Martin, Amr Salahieh, Daniel K. Hildebrand
  • Patent number: 9872768
    Abstract: Medical devices and delivery systems for delivering medical devices to a target location within a subject. In some embodiments the medical devices can be locked in a fully deployed and locked configuration. In some embodiments the delivery systems are configured with a single actuator to control the movement of multiple components of the delivery system. In some embodiments the actuator controls the independent and dependent movement of multiple components of the delivery system.
    Type: Grant
    Filed: June 6, 2016
    Date of Patent: January 23, 2018
    Assignee: Boston Scientific Scimed, Inc.
    Inventors: David J. Paul, Benjamin T. Sutton, Brian K. McCollum, Brian D. Brandt, Emma Leung, Kenneth M. Martin, Amr Salahieh, Daniel K. Hildebrand
  • Publication number: 20170100244
    Abstract: A guidewire system may include a guidewire having a relatively stiff proximal section and a relatively flexible distal section joined by a transition region, and a TAVI device slidably disposed on the guidewire. The guidewire may include an expandable element disposed about the transition region. The expandable element may be configured to expand from a collapsed configuration to an expanded configuration. The guidewire may include an expandable element disposed at the distal end. The distal section may be pre-configured to form more than one distal loop. A method of protecting an apex of a left ventricle during a TAVI procedure may include inserting a guidewire into the left ventricle, positioning a transition region adjacent the apex, expanding an expandable element such that the expandable element spans the apex, advancing a TAVI device distally over the guidewire to an aortic valve, and performing a TAVI procedure at the aortic valve.
    Type: Application
    Filed: December 22, 2016
    Publication date: April 13, 2017
    Applicant: BOSTON SCIENTIFIC SCIMED INC.
    Inventors: Dongming Hou, John Jianhua Chen, Robert Chang, Takashi H. Ino, Benjamin T. Sutton
  • Publication number: 20170027693
    Abstract: Medical devices and delivery systems for delivering medical devices to a target location within a subject. In some embodiments the medical devices can be locked in a fully deployed and locked configuration. In some embodiments the delivery systems are configured with a single actuator to control the movement of multiple components of the delivery system. In some embodiments the actuator controls the independent and dependent movement of multiple components of the delivery system.
    Type: Application
    Filed: June 6, 2016
    Publication date: February 2, 2017
    Applicant: BOSTON SCIENTIFIC SCIMED, INC.
    Inventors: David J. Paul, Benjamin T. Sutton, Brian K. McCollum, Brian D. Brandt, Emma Leung, Kenneth M. Martin, Amr Salahieh, Daniel K. Hildebrand
  • Patent number: 9358110
    Abstract: Medical devices and delivery systems for delivering medical devices to a target location within a subject. In some embodiments the medical devices can be locked in a fully deployed and locked configuration. In some embodiments the delivery systems are configured with a single actuator to control the movement of multiple components of the delivery system. In some embodiments the actuator controls the independent and dependent movement of multiple components of the delivery system.
    Type: Grant
    Filed: December 31, 2013
    Date of Patent: June 7, 2016
    Assignee: BOSTON SCIENTIFIC SCIMED, INC.
    Inventors: David J. Paul, Benjamin T. Sutton, Brian K. McCollum, Brian D. Brandt, Emma Leung, Kenneth M. Martin, Amr Salahieh, Daniel K. Hildebrand
  • Publication number: 20150335423
    Abstract: An apparatus for replacement a native heart valve is herein provided. The apparatus includes a replacement heart valve, an expandable anchor, and a plurality of rivets. The expandable anchor comprises a woven braid structure that surrounds at least a portion of the replacement heart valve and has a plurality of braid intersections. At least some of the braid intersections have rivets extending therethrough.
    Type: Application
    Filed: August 6, 2015
    Publication date: November 26, 2015
    Applicant: BOSTON SCIENTIFIC SCIMED, INC.
    Inventors: Peter W. Gregg, Jianhua Yang, Jarad Waisblatt, Benjamin T. Sutton, Ali Salahieh
  • Publication number: 20150320557
    Abstract: An apparatus for endovascularly replacing a patient's heart valve comprises an anchor having an outer surface and an inner surface. The anchor is expandable from a collapsed delivery configuration to a fully deployed configuration. A first locking element and a second locking element are attached to the inner surface of the anchor. The first locking element is engageable with the second locking element. At least one of the first locking element and the second locking element has a curved outer surface. Methods for attaching the second locking element to the anchor are also provided.
    Type: Application
    Filed: July 20, 2015
    Publication date: November 12, 2015
    Applicant: BOSTON SCIENTIFIC SCIMED INC.
    Inventors: Benjamin T. Sutton, Peter W. Gregg, David J. Paul, Stanley A. Carroll
  • Publication number: 20150051696
    Abstract: A guidewire system may include a guidewire having a relatively stiff proximal section and a relatively flexible distal section joined by a transition region, and a TAVI device slidably disposed on the guidewire. The guidewire may include an expandable element disposed about the transition region. The expandable element may be configured to expand from a collapsed configuration to an expanded configuration. The guidewire may include an expandable element disposed at the distal end. The distal section may be pre-configured to form more than one distal loop. A method of protecting an apex of a left ventricle during a TAVI procedure may include inserting a guidewire into the left ventricle, positioning a transition region adjacent the apex, expanding an expandable element such that the expandable element spans the apex, advancing a TAVI device distally over the guidewire to an aortic valve, and performing a TAVI procedure at the aortic valve.
    Type: Application
    Filed: August 13, 2014
    Publication date: February 19, 2015
    Inventors: Dongming Hou, John Jianhua Chen, Robert Chang, Takashi H. Ino, Benjamin T. Sutton
  • Publication number: 20140114405
    Abstract: Medical devices and delivery systems for delivering medical devices to a target location within a subject. In some embodiments the medical devices can be locked in a fully deployed and locked configuration. In some embodiments the delivery systems are configured with a single actuator to control the movement of multiple components of the delivery system. In some embodiments the actuator controls the independent and dependent movement of multiple components of the delivery system.
    Type: Application
    Filed: December 31, 2013
    Publication date: April 24, 2014
    Applicant: SADRA MEDICAL, INC.
    Inventors: David J. Paul, Benjamin T. Sutton, Brian K. McCollum, Brian D. Brandt, Emma Leung, Kenneth M. Martin, Amr Salahieh, Daniel K. Hildebrand
  • Publication number: 20130331931
    Abstract: An apparatus for replacement a native heart valve is herein provided. The apparatus includes a replacement heart valve, an expandable anchor, and a plurality of rivets. The expandable anchor comprises a woven braid structure that surrounds at least a portion of the replacement heart valve and has a plurality of braid intersections. At least some of the braid intersections have rivets extending therethrough.
    Type: Application
    Filed: June 6, 2013
    Publication date: December 12, 2013
    Inventors: Peter W. Gregg, Jianhua Yang, Jarad Waisblatt, Benjamin T. Sutton, Ali Salahieh
  • Publication number: 20130304199
    Abstract: An apparatus for endovascularly replacing a patient's heart valve comprises an anchor having an outer surface and an inner surface. The anchor is expandable from a collapsed delivery configuration to a fully deployed configuration. A first locking element and a second locking element are attached to the inner surface of the anchor. The first locking element is engageable with the second locking element. At least one of the first locking element and the second locking element has a curved outer surface. Methods for attaching the second locking element to the anchor are also provided.
    Type: Application
    Filed: May 7, 2013
    Publication date: November 14, 2013
    Applicant: Boston Scientific Scimed, Inc.
    Inventors: Benjamin T. Sutton, Peter W. Gregg, David J. Paul, Stanley A. Carroll