Patents by Inventor Benjamin Vakoc
Benjamin Vakoc has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20250067552Abstract: Systems, methods, and media for multiple beam optical coherence tomography are provided which, in some embodiments, include: a light source; a splitter that outputs a fraction of light to various waveguides; optical components that receive light from the waveguides and direct the light as beams that simultaneously impinge a sample at different lateral positions, and collect backscattered light from the lateral positons; another splitter that outputs a fraction of light to waveguides of a reference arm as reference light samples; a mixer that receives the backscattered light samples and the reference light samples, and combines each backscattered sample with a corresponding reference sample such that the mixer outputs fringes; and a detector that receives the fringes, and outputs OCT signals, each indicative of a structure of the sample at a respective lateral position.Type: ApplicationFiled: November 11, 2024Publication date: February 27, 2025Inventors: Benjamin Vakoc, Yongjoo Kim
-
Patent number: 12222202Abstract: Systems, methods, and media for multiple beam optical coherence tomography are provided which, in some embodiments, include: a light source; a splitter that outputs a fraction of light to various waveguides; optical components that receive light from the waveguides and direct the light as beams that simultaneously impinge a sample at different lateral positions, and collect backscattered light from the lateral positons; another splitter that outputs a fraction of light to waveguides of a reference arm as reference light samples; a mixer that receives the backscattered light samples and the reference light samples, and combines each backscattered sample with a corresponding reference sample such that the mixer outputs fringes; and a detector that receives the fringes, and outputs OCT signals, each indicative of a structure of the sample at a respective lateral position.Type: GrantFiled: December 21, 2020Date of Patent: February 11, 2025Assignee: The General Hospital CorporationInventors: Benjamin Vakoc, Yongjoo Kim
-
APPARATUS AND METHODS FOR HIGH-SPEED AND LONG DEPTH RANGE IMAGING USING OPTICAL COHERENCE TOMOGRAPHY
Publication number: 20250044516Abstract: Exemplary apparatus can be provided which can include a laser arrangement that is configured to provide a laser radiation, and including an optical cavity. The optical cavity can include a dispersive optical waveguide first arrangement having first and second sides, and which is configured to (i) receive at least one first electromagnetic radiation at the first side so as to provide at least one second electro-magnetic radiation, and (ii) to receive at least one third electro-magnetic radiation at the second side so as to provide at least one fourth electro-magnetic radiation. The first and second sides are different from one another, and the second and third radiations are related to one another. The optical cavity can also include an active optical modulator second arrangement which can be configured to receive and modulate the fourth radiation so as to provide the first electro-magnetic radiation to the first arrangement.Type: ApplicationFiled: May 22, 2024Publication date: February 6, 2025Applicant: The General Hospital CorporationInventors: Benjamin Vakoc, Meena Siddiqui -
Patent number: 12174115Abstract: An apparatus, including: an electromagnetic radiation source producing radiation for illuminating a sample located at an optical path depth, the electromagnetic radiation source providing the radiation to the sample to facilitate determining the optical path depth within the sample: an interferometer including: a reference arm a first portion of the radiation is delivered to, a sample arm to which a second portion of the radiation is delivered, a first optical subsystem coupled to the sample arm to interrogate the sample with the radiation delivered to the sample arm and to collect backscattered radiation from the sample, and a second optical subsystem coupled to the reference arm and the first optical subsystem to generate interference fringes between the collected backscattered radiation and the radiation delivered to the reference arm; and a data collection and processing system configured to compute the optical path depth of the sample from the received interference fringes.Type: GrantFiled: October 30, 2020Date of Patent: December 24, 2024Assignee: The General Hospital CorporationInventors: Benjamin Vakoc, Norman Lippok
-
Apparatus and methods for high-speed and long depth range imaging using optical coherence tomography
Patent number: 12013572Abstract: Exemplary apparatus can be provided which can include a laser arrangement that is configured to provide a laser radiation, and including an optical cavity. The optical cavity can include a dispersive optical waveguide first arrangement having first and second sides, and which is configured to (i) receive at least one first electro-magnetic radiation at the first side so as to provide at least one second electro-magnetic radiation, and (ii) to receive at least one third electro-magnetic radiation at the second side so as to provide at least one fourth electro-magnetic radiation. The first and second sides are different from one another, and the second and third radiations are related to one another. The optical cavity can also include an active optical modulator second arrangement which can be configured to receive and modulate the fourth radiation so as to provide the first electro-magnetic radiation to the first arrangement.Type: GrantFiled: March 30, 2022Date of Patent: June 18, 2024Assignee: The General Hospital CorporationInventors: Benjamin Vakoc, Meena Siddiqui -
Publication number: 20240159668Abstract: An apparatus, including: an electromagnetic radiation source producing radiation for illuminating a sample located at an optical path depth, the electromagnetic radiation source providing the radiation to the sample to facilitate determining the optical path depth within the sample: an interferometer including: a reference arm a first portion of the radiation is delivered to, a sample arm to which a second portion of the radiation is delivered, a first optical subsystem coupled to the sample arm to interrogate the sample with the radiation delivered to the sample arm and to collect backscattered radiation from the sample, and a second optical subsystem coupled to the reference arm and the first optical subsystem to generate interference fringes between the collected backscattered radiation and the radiation delivered to the reference arm; and a data collection and processing system configured to compute the optical path depth of the sample from the received interference fringes.Type: ApplicationFiled: October 30, 2020Publication date: May 16, 2024Inventors: Benjamin Vakoc, Norman Lippok
-
Publication number: 20230341222Abstract: Systems, methods, and media for multiple beam optical coherence tomography are provided which, in some embodiments, include: a light source; a splitter that outputs a fraction of light to various waveguides; optical components that receive light from the waveguides and direct the light as beams that simultaneously impinge a sample at different lateral positions, and collect backscattered light from the lateral positons; another splitter that outputs a fraction of light to waveguides of a reference arm as reference light samples; a mixer that receives the backscattered light samples and the reference light samples, and combines each backscattered sample with a corresponding reference sample such that the mixer outputs fringes; and a detector that receives the fringes, and outputs OCT signals, each indicative of a structure of the sample at a respective lateral position.Type: ApplicationFiled: December 21, 2020Publication date: October 26, 2023Applicant: The General Hospital CorporationInventors: Benjamin Vakoc, Yongjoo Kim
-
Publication number: 20230332879Abstract: A source for providing electromagnetic radiation within a particular spectral range, including: a ring-shaped optical resonator for circulating a plurality of wavelength bands including: a first optical phase modulator, a first chomatic dispersion device, a second optical phase modulator, a multi-line spectral domain filter, a second chromatic dispersion device, and an optical amplifier; a controller coupled to the first optical phase modulator and the second optical phase modulator which is configured to drive the first optical phase modulator with a first waveform and the second optical phase modulator with a second waveform, the first chromatic dispersion device being configured between the first optical phase modulator and the second optical phase modulator to provide chromatic dispersion so as to subject each of the plurality of wavelength bands to a respective plurality of different time delays, the first and second optical phase modulators being configured to create spectral broadening.Type: ApplicationFiled: January 29, 2021Publication date: October 19, 2023Inventors: Benjamin Vakoc, Tae Shik Kim
-
APPARATUS AND METHODS FOR HIGH-SPEED AND LONG DEPTH RANGE IMAGING USING OPTICAL COHERENCE TOMOGRAPHY
Publication number: 20220221267Abstract: Exemplary apparatus can be provided which can include a laser arrangement that is configured to provide a laser radiation, and including an optical cavity. The optical cavity can include a dispersive optical waveguide first arrangement having first and second sides, and which is configured to (i) receive at least one first electro-magnetic radiation at the first side so as to provide at least one second electro-magnetic radiation, and (ii) to receive at least one third electro-magnetic radiation at the second side so as to provide at least one fourth electro-magnetic radiation. The first and second sides are different from one another, and the second and third radiations are related to one another. The optical cavity can also include an active optical modulator second arrangement which can be configured to receive and modulate the fourth radiation so as to provide the first electro-magnetic radiation to the first arrangement.Type: ApplicationFiled: March 30, 2022Publication date: July 14, 2022Inventors: Benjamin Vakoc, Meena Siddiqui -
Apparatus and methods for high-speed and long depth range imaging using optical coherence tomography
Patent number: 11320256Abstract: Exemplary apparatus can be provided which can include a laser arrangement that is configured to provide a laser radiation, and including an optical cavity. The optical cavity can include a dispersive optical waveguide first arrangement having first and second sides, and which is configured to (i) receive at least one first electro-magnetic radiation at the first side so as to provide at least one second electro-magnetic radiation, and (ii) to receive at least one third electro-magnetic radiation at the second side so as to provide at least one fourth electro-magnetic radiation. The first and second sides are different from one another, and the second and third radiations are related to one another. The optical cavity can also include an active optical modulator second arrangement which can be configured to receive and modulate the fourth radiation so as to provide the first electro-magnetic radiation to the first arrangement.Type: GrantFiled: November 30, 2020Date of Patent: May 3, 2022Assignee: The General Hospital CorporationInventors: Benjamin Vakoc, Meena Siddiqui -
Patent number: 10966613Abstract: An apparatus can be provided which can include a laser arrangement which can be configured to provide a laser radiation, and can include an optical cavity. The optical cavity can include a dispersive optical first arrangement which can be configured to receive and disperse at least one first electro-magnetic radiation so as to provide at least one second electro-magnetic radiation. Such cavity can also include an active optical modulator second arrangement which can be configured to receive and modulate the at least one second radiation so as to provide at least one third electro-magnetic radiation. The optical cavity can further include a dispersive optical third arrangement which can be configured to receive and disperse at least one third electro-magnetic radiation so as to provide at least one fourth electro-magnetic radiation.Type: GrantFiled: December 20, 2019Date of Patent: April 6, 2021Assignee: The General Hospital CorporationInventors: Benjamin Vakoc, Meena Siddiqui, Serhat Tozburun
-
APPARATUS AND METHODS FOR HIGH-SPEED AND LONG DEPTH RANGE IMAGING USING OPTICAL COHERENCE TOMOGRAPHY
Publication number: 20210080247Abstract: Exemplary apparatus can be provided which can include a laser arrangement that is configured to provide a laser radiation, and including an optical cavity. The optical cavity can include a dispersive optical waveguide first arrangement having first and second sides, and which is configured to (i) receive at least one first electro-magnetic radiation at the first side so as to provide at least one second electro-magnetic radiation, and (ii) to receive at least one third electro-magnetic radiation at the second side so as to provide at least one fourth electro-magnetic radiation. The first and second sides are different from one another, and the second and third radiations are related to one another. The optical cavity can also include an active optical modulator second arrangement which can be configured to receive and modulate the fourth radiation so as to provide the first electro-magnetic radiation to the first arrangement.Type: ApplicationFiled: November 30, 2020Publication date: March 18, 2021Inventors: Benjamin Vakoc, Meena Siddiqui -
Apparatus and methods for high-speed and long depth range imaging using optical coherence tomography
Patent number: 10852121Abstract: Exemplary apparatus can be provided which can include a laser arrangement that is configured to provide a laser radiation, and including an optical cavity. The optical cavity can include a dispersive optical waveguide first arrangement having first and second sides, and which is configured to (i) receive at least one first electro-magnetic radiation at the first side so as to provide at least one second electro-magnetic radiation, and (ii) to receive at least one third electro-magnetic radiation at the second side so as to provide at least one fourth electro-magnetic radiation. The first and second sides are different from one another, and the second and third radiations are related to one another. The optical cavity can also include an active optical modulator second arrangement which can be configured to receive and modulate the fourth radiation so as to provide the first electro-magnetic radiation to the first arrangement.Type: GrantFiled: February 13, 2017Date of Patent: December 1, 2020Assignee: The General Hospital CorporationInventors: Benjamin Vakoc, Meena Siddiqui -
Publication number: 20200345235Abstract: An apparatus can be provided which can include a laser arrangement which can be configured to provide a laser radiation, and can include an optical cavity. The optical cavity can include a dispersive optical first arrangement which can be configured to receive and disperse at least one first electro-magnetic radiation so as to provide at least one second electro-magnetic radiation. Such cavity can also include an active optical modulator second arrangement which can be configured to receive and modulate the at least one second radiation so as to provide at least one third electro-magnetic radiation. The optical cavity can further include a dispersive optical third arrangement which can be configured to receive and disperse at least one third electro-magnetic radiation so as to provide at least one fourth electro-magnetic radiation.Type: ApplicationFiled: December 20, 2019Publication date: November 5, 2020Inventors: Benjamin Vakoc, Meena Siddiqui, Serhat Tozburun
-
Patent number: 10653319Abstract: An apparatus can be provided which can include a laser arrangement which can be configured to provide a laser radiation, and can include an optical cavity. The optical cavity can include a dispersive optical first arrangement which can be configured to receive and disperse at least one first electro-magnetic radiation so as to provide at least one second electro-magnetic radiation. Such cavity can also include an active optical modulator second arrangement which can be configured to receive and modulate the at least one second radiation so as to provide at least one third electro-magnetic radiation. The optical cavity can further include a dispersive optical third arrangement which can be configured to receive and disperse at least one third electro-magnetic radiation so as to provide at least one fourth electro-magnetic radiation.Type: GrantFiled: July 31, 2018Date of Patent: May 19, 2020Assignee: The General Hospital CorporationInventors: Benjamin Vakoc, Meena Siddiqui, Serhat Tozburun
-
Publication number: 20190082962Abstract: An apparatus can be provided which can include a laser arrangement which can be configured to provide a laser radiation, and can include an optical cavity. The optical cavity can include a dispersive optical first arrangement which can be configured to receive and disperse at least one first electro-magnetic radiation so as to provide at least one second electro-magnetic radiation. Such cavity can also include an active optical modulator second arrangement which can be configured to receive and modulate the at least one second radiation so as to provide at least one third electro-magnetic radiation. The optical cavity can further include a dispersive optical third arrangement which can be configured to receive and disperse at least one third electro-magnetic radiation so as to provide at least one fourth electro-magnetic radiation.Type: ApplicationFiled: July 31, 2018Publication date: March 21, 2019Inventors: Benjamin Vakoc, Meena Siddiqui, Serhat Tozburun
-
APPARATUS AND METHODS FOR HIGH-SPEED AND LONG DEPTH RANGE IMAGING USING OPTICAL COHERENCE TOMOGRAPHY
Publication number: 20190049232Abstract: Exemplary apparatus can be provided which can include a laser arrangement that is configured to provide a laser radiation, and including an optical cavity. The optical cavity can include a dispersive optical waveguide first arrangement having first and second sides, and which is configured to (i) receive at least one first electro-magnetic radiation at the first side so as to provide at least one second electro-magnetic radiation, and (ii) to receive at least one third electro-magnetic radiation at the second side so as to provide at least one fourth electro-magnetic radiation. The first and second sides are different from one another, and the second and third radiations are related to one another. The optical cavity can also include an active optical modulator second arrangement which can be configured to receive and modulate the fourth radiation so as to provide the first electro-magnetic radiation to the first arrangement.Type: ApplicationFiled: February 13, 2017Publication date: February 14, 2019Inventors: Benjamin Vakoc, Meena Siddiqui -
Patent number: 10058250Abstract: An apparatus can be provided which can include a laser arrangement which can be configured to provide a laser radiation, and can include an optical cavity. The optical cavity can include a dispersive optical first arrangement which can be configured to receive and disperse at least one first electro-magnetic radiation so as to provide at least one second electro-magnetic radiation. Such cavity can also include an active optical modulator second arrangement which can be configured to receive and modulate the at least one second radiation so as to provide at least one third electro-magnetic radiation. The optical cavity can further include a dispersive optical third arrangement which can be configured to receive and disperse at least one third electro-magnetic radiation so as to provide at least one fourth electro-magnetic radiation.Type: GrantFiled: March 9, 2017Date of Patent: August 28, 2018Assignee: The General Hospital CorporationInventors: Benjamin Vakoc, Meena Siddiqui, Serhat Tozburun
-
Publication number: 20170319071Abstract: An apparatus can be provided which can include a laser arrangement which can be configured to provide a laser radiation, and can include an optical cavity. The optical cavity can include a dispersive optical first arrangement which can be configured to receive and disperse at least one first electro-magnetic radiation so as to provide at least one second electro-magnetic radiation. Such cavity can also include an active optical modulator second arrangement which can be configured to receive and modulate the at least one second radiation so as to provide at least one third electro-magnetic radiation. The optical cavity can further include a dispersive optical third arrangement which can be configured to receive and disperse at least one third electro-magnetic radiation so as to provide at least one fourth electro-magnetic radiation.Type: ApplicationFiled: March 9, 2017Publication date: November 9, 2017Inventors: Benjamin Vakoc, Meena Siddiqui, Serhat Tozburun
-
Patent number: 9668652Abstract: An apparatus can be provided which can include a laser arrangement which can be configured to provide a laser radiation, and can include an optical cavity. The optical cavity can include a dispersive optical first arrangement which can be configured to receive and disperse at least one first electro-magnetic radiation so as to provide at least one second electro-magnetic radiation. Such cavity can also include an active optical modulator second arrangement which can be configured to receive and modulate the at least one second radiation so as to provide at least one third electro-magnetic radiation. The optical cavity can further include a dispersive optical third arrangement which can be configured to receive and disperse at least one third electro-magnetic radiation so as to provide at least one fourth electro-magnetic radiation.Type: GrantFiled: July 25, 2014Date of Patent: June 6, 2017Assignee: The General Hospital CorporationInventors: Benjamin Vakoc, Meena Siddiqui, Serhat Tozburun