Patents by Inventor Benny P. Mikkelsen

Benny P. Mikkelsen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7394992
    Abstract: In an optical transmitter, continuous wave light from a laser passes through a data modulator (DM) for non-return-to-zero (NRZ) encoding of a data stream and through a pulse modulator to add return-to-zero encoding to the modulated optical signal. A modulator controller monitors the output optical signal power, optimizes the bias setting for the DM and the PM, and optimizes the phase relationship between the pulse and data components of the modulated optical signal. For each optimization, a low amplitude and low frequency dither signal is injected at appropriate points in the modulator. A single photo detector and electrical receiver are used in a multiplexed fashion to monitor the optical output signal and derive separate feedback signals. Remaining control circuitry forces a null in a respective residual dither component in the optical output signal to maintain the desired bias level or phase alignment.
    Type: Grant
    Filed: March 11, 2003
    Date of Patent: July 1, 2008
    Assignee: Mintera Corporation
    Inventors: Myles Kimmitt, John E. Kaufmann, Yuval Shohet, Kent Springer, Tina Fjelde, Pavel V. Mamyshev, Benny P. Mikkelsen
  • Patent number: 7366425
    Abstract: Different techniques for generating spectrally efficient carrier-suppressed modulated optical signals, also known as “phase-shaped binary transmission” (PSBT) signals, employ electrical components that generate only 2-level or binary signals, in contrast to techniques that require 3-level electrical drivers. The PSBT modulators can be used with return-to-zero (RZ) modulators for generating RZ-PSBT signals, which have the characteristic of even greater spectral efficiency than NRZ PSBT signals. The technique is generalized to RZ signals with an arbitrary phase difference between pulses. These signals can be generated by shifting the central (carrier) frequency of an RZ modulated optical signal, which can be done using a certain phase modulation or using spectral filtering with a passband offset from the center (carrier) frequency of the modulated optical signal, and the signals can also be generated by phase modulation at a frequency lower than the signaling rate of the modulated signal.
    Type: Grant
    Filed: March 11, 2003
    Date of Patent: April 29, 2008
    Assignee: Mintera Corporation
    Inventors: Pavel V. Mamyshev, Christian J. Rasmussen, Benny P. Mikkelsen, Fenghai Liu
  • Publication number: 20030218790
    Abstract: A high speed digital optical transmission system that improves data transmission performance in both linear and nonlinear system environments. The high speed optical transmission system includes a laser for generating a CW light beam, and a data modulator for modulating the CW light beam in response to an electrical NRZ data signal to generate a modulated NRZ optical signal with positive chirp. The bias point of the data modulator is obtained by increasing the bias offset relative to quadrature while maintaining the voltage corresponding to a 0 bit at a predetermined level. The bias point allows the data modulator to be operated so that the chirp of the modulated NRZ optical signal is positive for most of each bit time slot.
    Type: Application
    Filed: March 17, 2003
    Publication date: November 27, 2003
    Applicant: MINTERA CORPORATION
    Inventors: Benny P. Mikkelsen, Christian J. Rasmussen, Tina Fjelde, Fenghai Liu, Pavel V. Mamyshev, David Wolfson, John E. Kaufmann
  • Publication number: 20030175036
    Abstract: Different techniques for generating spectrally efficient carrier-suppressed modulated optical signals, also known as “phase-shaped binary transmission” (PSBT) signals, employ electrical components that generate only 2-level or binary signals, in contrast to techniques that require 3-level electrical drivers. The PSBT modulators can be used with return-to-zero (RZ) modulators for generating RZ-PSBT signals, which have the characteristic of even greater spectral efficiency than NRZ PSBT signals. The technique is generalized to RZ signals with an arbitrary phase difference between pulses. These signals can be generated by shifting the central (carrier) frequency of an RZ modulated optical signal, which can be done using a certain phase modulation or using spectral filtering with a passband offset from the center (carrier) frequency of the modulated optical signal, and the signals can also be generated by phase modulation at a frequency lower than the signaling rate of the modulated signal.
    Type: Application
    Filed: March 11, 2003
    Publication date: September 18, 2003
    Applicant: MINTERA CORPORATION
    Inventors: Pavel V. Mamyshev, Christian J. Rasmussen, Benny P. Mikkelsen, Fenghai Liu
  • Publication number: 20030175037
    Abstract: In an optical transmitter, continuous wave light from a laser passes through a data modulator (DM) for non-return-to-zero (NRZ) encoding of a data stream and through a pulse modulator to add return-to-zero encoding to the modulated optical signal. A modulator controller monitors the output optical signal power, optimizes the bias setting for the DM and the PM, and optimizes the phase relationship between the pulse and data components of the modulated optical signal. For each optimization, a low amplitude and low frequency dither signal is injected at appropriate points in the modulator. A single photo detector and electrical receiver are used in a multiplexed fashion to monitor the optical output signal and derive separate feedback signals. Remaining control circuitry forces a null in a respective residual dither component in the optical output signal to maintain the desired bias level or phase alignment.
    Type: Application
    Filed: March 11, 2003
    Publication date: September 18, 2003
    Applicant: MINTERA CORPORATION
    Inventors: Myles Kimmitt, John E. Kaufmann, Yuval Shohet, Kent Springer, Tina Fjelde, Pavel V. Mamyshev, Benny P. Mikkelsen