Patents by Inventor Benoit Mahler

Benoit Mahler has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10644175
    Abstract: A process of growth in the thickness of at least one facet of a colloidal inorganic sheet. By sheet is meant a structure having at least one dimension, the thickness, of nanometric size and lateral dimensions great compared to the thickness, typically more than 5 times the thickness. By homostructured is meant a material of homogeneous composition in the thickness and by heterostructured is meant a material of heterogeneous composition in the thickness. The process allows the deposition of at least one monolayer of atoms on at least one inorganic colloidal sheet, this monolayer being constituted of atoms of the type of those contained or not in the sheet. Homostructured and heterostructured materials resulting from such process as well as the applications of the materials are also described.
    Type: Grant
    Filed: May 1, 2017
    Date of Patent: May 5, 2020
    Assignee: NEXDOT
    Inventor: Benoit Mahler
  • Patent number: 10490624
    Abstract: A process for manufacturing colloidal nanosheet, by lateral growth, on an initial colloidal nanocrystal, of a crystalline semiconductor material represented by the formula MnXy, where M is a transition metal and X a chalcogen. The process includes the following steps: The preparation of a first organic solution, non or barely coordinating used as a synthesis solvent and including at least one initial colloidal nanocrystal; The preparation of a second organic solution including precursors of M and X, and including an acetate salt. And the slow introduction over a predetermined time scale of a predetermined amount of the second solution in a predetermined amount of the first solution, at a predetermined temperature for the growth of nanosheets. The use of the obtained material is also presented.
    Type: Grant
    Filed: October 24, 2011
    Date of Patent: November 26, 2019
    Assignee: NEXDOT
    Inventors: Benoit Mahler, Sandrine Ithurria
  • Patent number: 10253415
    Abstract: A process of growth in the thickness of at least one facet of a colloidal inorganic sheet, by sheet is meant a structure having at least one dimension, the thickness, of nanometric size and lateral dimensions great compared to the thickness, typically more than 5 times the thickness. The process allows the deposition of at least one monolayer of atoms on at least one inorganic colloidal sheet, this monolayer being constituted of atoms of the type of those contained or not in the sheet. Homostructured and heterostructured materials resulting from such process as well as the applications of the materials are also described. By homostructured is meant a material of homogeneous composition in the thickness and by heterostructured is meant a material of heterogeneous composition in the thickness.
    Type: Grant
    Filed: October 19, 2012
    Date of Patent: April 9, 2019
    Assignee: NEXDOT
    Inventor: Benoit Mahler
  • Patent number: 9958137
    Abstract: A device that emits light in response to an electrical or optical excitation, such as LEDs, displays, e-readers, device includes at least one anisotropic flat colloidal semiconductor nanocrystal whose smallest dimension, namely the thickness, is smaller than the other two by a factor of at least 1.5, the emitted light having an intensity and a polarization that vary according to the angle formed by the light emitting direction and the normal to the largest surface of the flat nanocrystal. The device allows to realize a light-emitting device exhibiting simultaneously a high emission spectral finesse and allows proper control of the wavelength, the directivity and/or polarization of the emitted light, and thus increases the brightness and color gamut of displays composed of such a device. Such devices are found for example in displays, televisions, mobile phones, tablets, or computers. The various embodiments of these devices are also presented.
    Type: Grant
    Filed: August 5, 2016
    Date of Patent: May 1, 2018
    Assignee: NEXDOT
    Inventors: Benoit Mahler, Thomas Pons, Elsa Cassette
  • Publication number: 20180107065
    Abstract: Disclosed is a population of semiconductor nanoplatelets, each member of the population including a nanoplatelet core including a first semiconductor material and a shell including a second semiconductor material on the surface of the nanoplatelet core, wherein the population exhibits fluorescence quantum efficiency at 100° C. or above that is at least 80% of the fluorescence quantum efficiency of the population at 20° C. Also disclosed is a nanoplatelets film including the population of nanoplatelets, a backlight unit including the nanoplatelets film and a liquid crystal display including the backlight unit.
    Type: Application
    Filed: March 25, 2016
    Publication date: April 19, 2018
    Inventors: Hadrien HEUCLIN, Brice NADAL, Chloe GRAZON, Benoit MAHLER, Emmanuel LHUILLIER
  • Publication number: 20170236959
    Abstract: A process of growth in the thickness of at least one facet of a colloidal inorganic sheet. By sheet is meant a structure having at least one dimension, the thickness, of nanometric size and lateral dimensions great compared to the thickness, typically more than 5 times the thickness. By homostructured is meant a material of homogeneous composition in the thickness and by heterostructured is meant a material of heterogeneous composition in the thickness. The process allows the deposition of at least one monolayer of atoms on at least one inorganic colloidal sheet, this monolayer being constituted of atoms of the type of those contained or not in the sheet. Homostructured and heterostructured materials resulting from such process as well as the applications of the materials are also described.
    Type: Application
    Filed: May 1, 2017
    Publication date: August 17, 2017
    Inventor: Benoit MAHLER
  • Patent number: 9670062
    Abstract: A process of growth in the thickness of at least one facet of a colloidal inorganic sheet. By sheet is meant a structure having at least one dimension, the thickness, of nanometric size and lateral dimensions great compared to the thickness, typically more than 5 times the thickness. By homostructured is meant a material of homogeneous composition in the thickness and by heterostructured is meant a material of heterogeneous composition in the thickness. The process allows the deposition of at least one monolayer of atoms on at least one inorganic colloidal sheet, this monolayer being constituted of atoms of the type of those contained or not in the sheet. Homostructured and heterostructured materials resulting from such process as well as the applications of the materials are also described.
    Type: Grant
    Filed: October 19, 2012
    Date of Patent: June 6, 2017
    Assignee: NEXDOT
    Inventor: Benoit Mahler
  • Publication number: 20160356456
    Abstract: A device that emits light in response to an electrical or optical excitation, such as LEDs, displays, e-readers, device includes at least one anisotropic flat colloidal semiconductor nanocrystal whose smallest dimension, namely the thickness, is smaller than the other two by a factor of at least 1.5, the emitted light having an intensity and a polarization that vary according to the angle formed by the light emitting direction and the normal to the largest surface of the flat nanocrystal. The device allows to realize a light-emitting device exhibiting simultaneously a high emission spectral finesse and allows proper control of the wavelength, the directivity and/or polarization of the emitted light, and thus increases the brightness and color gamut of displays composed of such a device. Such devices are found for example in displays, televisions, mobile phones, tablets, or computers. The various embodiments of these devices are also presented.
    Type: Application
    Filed: August 5, 2016
    Publication date: December 8, 2016
    Inventors: Benoit MAHLER, Thomas PONS, Elsa CASSETTE
  • Patent number: 9447927
    Abstract: A device that emits light in response to an electrical or optical excitation, such as LEDs, displays, e-readers, device includes at least one anisotropic flat colloidal semiconductor nanocrystal whose smallest dimension, namely the thickness, is smaller than the other two by a factor of at least 1.5, the emitted light having an intensity and a polarization that vary according to the angle formed by the light emitting direction and the normal to the largest surface of the flat nanocrystal. The device allows to realize a light-emitting device exhibiting simultaneously a high emission spectral finesse and allows proper control of the wavelength, the directivity and/or polarization of the emitted light, and thus increases the brightness and color gamut of displays composed of such a device. Such devices are found for example in displays, televisions, mobile phones, tablets, or computers. The various embodiments of these devices are also presented.
    Type: Grant
    Filed: July 11, 2014
    Date of Patent: September 20, 2016
    Assignee: NEXDOT
    Inventors: Benoit Mahler, Thomas Pons, Elsa Cassette
  • Publication number: 20140367721
    Abstract: A device that emits light in response to an electrical or optical excitation, such as LEDs, displays, e-readers, device includes at least one anisotropic flat colloidal semiconductor nanocrystal whose smallest dimension, namely the thickness, is smaller than the other two by a factor of at least 1.5, the emitted light having an intensity and a polarization that vary according to the angle formed by the light emitting direction and the normal to the largest surface of the flat nanocrystal. The device allows to realize a light-emitting device exhibiting simultaneously a high emission spectral finesse and allows proper control of the wavelength, the directivity and/or polarization of the emitted light, and thus increases the brightness and color gamut of displays composed of such a device. Such devices are found for example in displays, televisions, mobile phones, tablets, or computers. The various embodiments of these devices are also presented.
    Type: Application
    Filed: July 11, 2014
    Publication date: December 18, 2014
    Applicant: NEXDOT
    Inventors: Benoit MAHLER, Thomas PONS, Elsa CASSETTE
  • Publication number: 20140287237
    Abstract: A process of growth in the thickness of at least one facet of a colloidal inorganic sheet. By sheet is meant a structure having at least one dimension, the thickness, of nanometric size and lateral dimensions great compared to the thickness, typically more than 5 times the thickness. By homostructured is meant a material of homogeneous composition in the thickness and by heterostructured is meant a material of heterogeneous composition in the thickness. The process allows the deposition of at least one monolayer of atoms on at least one inorganic colloidal sheet, this monolayer being constituted of atoms of the type of those contained or not in the sheet. Homostructured and heterostructured materials resulting from such process as well as the applications of the materials are also described.
    Type: Application
    Filed: October 19, 2012
    Publication date: September 25, 2014
    Applicant: NEXDOT
    Inventor: Benoit Mahler
  • Publication number: 20140255316
    Abstract: A nanoparticle includes a nanosheet coated partially or totally with at least one layer of inorganic material and its use as a fluorophore or a fluorescent agent.
    Type: Application
    Filed: October 19, 2012
    Publication date: September 11, 2014
    Inventors: Jacques Lewiner, Benoit Mahler
  • Publication number: 20140242389
    Abstract: A process of growth in the thickness of at least one facet of a colloidal inorganic sheet, by sheet is meant a structure having at least one dimension, the thickness, of nanometric size and lateral dimensions great compared to the thickness, typically more than 5 times the thickness. The process allows the deposition of at least one monolayer of atoms on at least one inorganic colloidal sheet, this monolayer being constituted of atoms of the type of those contained or not in the sheet. Homostructured and heterostructured materials resulting from such process as well as the applications of the materials are also described. By homostructured is meant a material of homogeneous composition in the thickness and by heterostructured is meant a material of heterogeneous composition in the thickness.
    Type: Application
    Filed: October 19, 2012
    Publication date: August 28, 2014
    Applicant: NEXDOT
    Inventor: Benoit Mahler
  • Publication number: 20130220405
    Abstract: A process for manufacturing colloidal nanosheet, by lateral growth, on an initial colloidal nanocrystal, of a crystalline semiconductor material represented by the formula MnXy, where M is a transition metal and X a chalcogen. The process includes the following steps: The preparation of a first organic solution, non or barely coordinating used as a synthesis solvent and including at least one initial colloidal nanocrystal; The preparation of a second organic solution including precursors of M and X, and including an acetate salt. And the slow introduction over a predetermined time scale of a predetermined amount of the second solution in a predetermined amount of the first solution, at a predetermined temperature for the growth of nanosheets. The use of the obtained material is also presented.
    Type: Application
    Filed: October 24, 2011
    Publication date: August 29, 2013
    Applicant: SOLARWELL
    Inventors: Benoit Mahler, Sandrine Ithurria