Patents by Inventor Benoit Simard

Benoit Simard has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9284398
    Abstract: Modified carbon nanotubes are provided having carbon nanotube core covalently bound through C—C bonds to a polymer shell surrounding the carbon nanotube core. The polymer shell is a polymer having functional groups pointing outwardly from the shell. The functional groups are compatible with or able to covalently connect to another polymer. Such modified carbon nanotubes are more readily dispersed in a homogeneous manner in another polymer and may be used as a reinforcing filler in a polymer matrix. The modified carbon nanotubes with a core-shell structure in which the core has a substantially unidirectional orientation within the shell are produced by reacting neutral carbon nanotubes with 4-vinylaniline through a diazonium reaction in presence of one or more types of multifunctional monomers carrying a vinyl moiety and one or more functional groups for compatibilization with or connection to another polymer.
    Type: Grant
    Filed: June 10, 2011
    Date of Patent: March 15, 2016
    Assignee: National Research Council of Canada
    Inventors: Jingwen Guan, Robin Fraser, Benoit Simard
  • Patent number: 8834827
    Abstract: An integrated method and apparatus to continuously produce purified Single Wall Carbon Nanotubes (SWNT) from a continuous supply of solid carbon powder fed to an induction plasma torch. The apparatus includes a reactor body disposed to maintain laminar flow of gases with the torch body and coupled to a quenching body where temperature and residence time is controlled. Conveniently, functionalization may take place in the quenching body. The torch is operated with an argon carrier gas, an argon stabilizing gas and a helium sheath gas. Solid carbon reactants are preferably mixed with at least two metal catalysts containing nickel and cobalt with additional metal oxides of yttrium and cerium being desirable.
    Type: Grant
    Filed: March 14, 2006
    Date of Patent: September 16, 2014
    Assignees: National Research Council of Canada, Universite de Sherbrooke
    Inventors: Benoit Simard, Christopher Thomas Kingston, Stephane Denommee, Gervais Soucy, German Cota Sanchez
  • Patent number: 8816007
    Abstract: The present invention provides methods to functionalize and solubilize WCNT with a phenolic polymer such as a lignin or a PF resin followed by in-situ integration of this functionalized CNT in the presence of formaldehyde and phenol and/or lignin to generate either CNT-reinforced phenol-formaldehyde polymer or CNT-reinforced lignin-phenol-formaldehyde polymer in either liquid or powder form suitable as an adhesive in the manufacture of a lignocellulosic composite material such as OSB and plywood.
    Type: Grant
    Filed: July 27, 2011
    Date of Patent: August 26, 2014
    Assignees: FPInnovations, National Research Council of Canada
    Inventors: Yaolin Zhang, Xiang-Ming Wang, Martin Feng, Gilles Brunette, Fuyong Cheng, Benoit Simard
  • Patent number: 8461294
    Abstract: Compounds are attached to carbon nanotubes (CNT) by a process which comprises: subjecting surface treated CNTs which have been treated to induce negatively charged surface groups thereon, to nucleophilic substitution reaction with a compound carrying a functional group capable of reacting with the negatively charged groups on the CNT surface, whereby the compound chemically bonds to the CNT. The surface CNT treatment may be reduction. The compounds which are bonded to the CNT may be epoxy resins, bonded directly or through a spacer group. Bi-functional CNTs, grafted to both epoxy resins and other polymers such as polystyrene, are also made by this process.
    Type: Grant
    Filed: February 28, 2008
    Date of Patent: June 11, 2013
    Assignee: National Research Council of Canada
    Inventors: Benoit Simard, Jingwen Guan
  • Publication number: 20130137822
    Abstract: Modified carbon nanotubes are provided having carbon nanotube core covalently bound through C—C bonds to a polymer shell surrounding the carbon nanotube core. The polymer shell is a polymer having functional groups pointing outwardly from the shell. The functional groups are compatible with or able to covalently connect to another polymer. Such modified carbon nanotubes are more readily dispersed in a homogeneous manner in another polymer and may be used as a reinforcing filler in a polymer matrix. The modified carbon nanotubes with a core-shell structure in which the core has a substantially unidirectional orientation within the shell are produced by reacting neutral carbon nanotubes with 4-vinylaniline through a diazonium reaction in presence of one or more types of multifunctional monomers carrying a vinyl moiety and one or more functional groups for compatibilization with or connection to another polymer.
    Type: Application
    Filed: June 10, 2011
    Publication date: May 30, 2013
    Applicant: NATIONAL RESEARCH COUNCIL OF CANADA
    Inventors: Jingwen Guan, Robin Fraser, Benoit Simard
  • Patent number: 8288457
    Abstract: Epoxy resins are chemically attached to carbon nanotubes (CNTs), in a one-step process in which a reaction mixture comprising the epoxy polymer, the CNTs and a bridging agent which is a chemical compound capable of forming living polymers, e.g. styrene or MMA is formed and radical formation is initiated in the reaction mixture; the epoxy polymer or monomer grafts onto the CNTs through the intermediary block of the bridging agent.
    Type: Grant
    Filed: February 28, 2008
    Date of Patent: October 16, 2012
    Assignee: National Research Council of Canada
    Inventors: Benoit Simard, Jingwen Guan, Stephane Dénommée
  • Publication number: 20120041146
    Abstract: The present invention provides methods to functionalize and solubilize WCNT with a phenolic polymer such as a lignin or a PF resin followed by in-situ integration of this functionalized CNT in the presence of formaldehyde and phenol and/or lignin to generate either CNT-reinforced phenol-formaldehyde polymer or CNT-reinforced lignin-phenol-formaldehyde polymer in either liquid or powder form suitable as an adhesive in the manufacture of a lignocellulosic composite material such as OSB and plywood.
    Type: Application
    Filed: July 27, 2011
    Publication date: February 16, 2012
    Applicants: NATIONAL RESEARCH COUNCIL OF CANADA, FPINNOVATIONS
    Inventors: Yaolin ZHANG, Xiang-Ming WANG, Martin FENG, Gilles BRUNETTE, Fuyong CHENG, Benoit SIMARD
  • Publication number: 20100087614
    Abstract: Compounds are attached to carbon nanotubes (CNT) by a process which comprises: subjecting surface treated CNTs which have been treated to induce negatively charged surface groups thereon, to nucleophilic substitution reaction with a compound carrying a functional group capable of reacting with the negatively charged groups on the CNT surface, whereby the compound chemically bonds to the CNT. The surface CNT treatment may be reduction. The compounds which are bonded to the CNT may be epoxy resins, bonded directly or through a spacer group. Bi-functional CNTs, grafted to both epoxy resins and other polymers such as polystyrene, are also made by this process.
    Type: Application
    Filed: February 28, 2008
    Publication date: April 8, 2010
    Applicant: NATIONAL RESEARCH COUNCIL OF CANADA
    Inventors: Benoit Simard, Jingwen Guan
  • Publication number: 20100069604
    Abstract: Epoxy resins are chemically attached to carbon nanotubes (CNTs), in a one-step process in which a reaction mixture comprising the epoxy polymer, the CNTs and a bridging agent which is a chemical compound capable of forming living polymers, e.g. styrene or MMA is formed and radical formation is initiated in the reaction mixture; the epoxy polymer or monomer grafts onto the CNTs through the intermediary block of the bridging agent.
    Type: Application
    Filed: February 28, 2008
    Publication date: March 18, 2010
    Applicant: NATIONAL RESEARCH COUNCIL OF CANADA
    Inventors: Benoit Simard, Jingwen Guan, Stephane Dénommée
  • Publication number: 20090306427
    Abstract: The invention relates to a process for chemically functionalizing carbon nanotubes. The process comprises dispersing carbon nanotube salts in a solvent; and chemically functionalizing the carbon nanotube salts to provide chemically functionalized carbon nanotubes.
    Type: Application
    Filed: February 26, 2007
    Publication date: December 10, 2009
    Inventors: Yadienka Martinez-Rubi, Jingwen Guan, Benoit Simard
  • Publication number: 20090226724
    Abstract: A functional nanoparticle for use in the ultrasensitive identification of bacteria and gene species has a magnetic core, an insulating first shell surrounding the magnetic core, and a luminescent second shell surrounding the first shell.
    Type: Application
    Filed: November 28, 2006
    Publication date: September 10, 2009
    Applicant: NATIONAL RESEARCH COUNCIL OF CANADA
    Inventors: Dongling Ma, Benoit Simard
  • Publication number: 20090214799
    Abstract: An integrated method and apparatus to continuously produce purified Single Wall Carbon Nanotubes (SWNT) from a continuous supply of solid carbon powder fed to an induction plasma torch. The apparatus includes a reactor body disposed to maintain laminar flow of gases with the torch body and coupled to a quenching body where temperature and residence time is controlled. Conveniently, functionalization may take place in the quenching body. The torch is operated with an argon carrier gas, an argon stabilizing gas and a helium sheath gas. Solid carbon reactants are preferably mixed with at least two metal catalysts containing nickel and cobalt with additional metal oxides of yttrium and cerium being desirable.
    Type: Application
    Filed: March 14, 2006
    Publication date: August 27, 2009
    Inventors: Benoit Simard, Thomas Kingston, Stephane Denommoo, Gervais Soucy, German Cota Sanchez
  • Patent number: 7374730
    Abstract: The invention relates to a process for formation of carbon nanotubes. The process comprises laser ablation of a bulk metal catalyst within a hydrocarbon solution to produce a feedstock containing metal catalyst nanoparticles. The feedstock is atomizing to form a feedstock aerosol. The aerosol is heated to form naotubes. An apparatus for forming carbon nanotubes is also disclosed. Nanoparticles formed in the feedstock according to the invention can be controlled to achieve a narrow size distribution, which ultimately allows for good control over size and chirality of the nanotubes formed.
    Type: Grant
    Filed: March 26, 2002
    Date of Patent: May 20, 2008
    Assignee: National Research Council of Canada
    Inventors: Benoit Simard, Michael Barnett, Stéphane Dénommée, Dean Ruth
  • Publication number: 20060057384
    Abstract: There is disclosed an approach for the gold-coating of cores, such as magnetic nanoparticles. In some instances, the core and gold colloids can be fabricated first through irradiation, such as laser irradiation, and then mixed together for further laser irradiation. Alternatively, the cores may be fabricated using wet chemistry and subsequently coated using an irradiation method. Also disclosed is a two phase aqueous:oil system and its use in coating a material present in one phase with a second material present in the second phase.
    Type: Application
    Filed: March 30, 2005
    Publication date: March 16, 2006
    Inventors: Benoit Simard, Jin Zhang, Yves Deslandes, Michael Post
  • Publication number: 20040109814
    Abstract: The invention relates to a process for formation of carbon nanotubes. The process comprises laser ablation of a bulk metal catalyst within a hydrocarbon solution to produce a feedstock containing metal catalyst nanoparticles. The feedstock is atomizing to form a feedstock aerosol. The aerosol is heated to form naotubes. An apparatus for forming carbon nanotubes is also disclosed. Nanoparticles formed in the feedstock according to the invention can be controlled to achieve a narrow size distribution, which ultimately allows for good control over size and chirality of the nanotubes formed.
    Type: Application
    Filed: January 26, 2004
    Publication date: June 10, 2004
    Inventors: Benoit Simard, Michael Barnett, Stephane Denommee, Dean Ruth
  • Patent number: D718415
    Type: Grant
    Filed: March 7, 2013
    Date of Patent: November 25, 2014
    Inventor: Jean-Benoît Simard