Patents by Inventor Bentley Wall

Bentley Wall has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20160202573
    Abstract: Electro-optic lenses, including liquid crystals, wherein the power of the lenses can be modified by application of an electric field. In one embodiment, the liquid crystal-based lenses include ring electrodes having a resistive bridge located between adjacent electrodes, and in a preferred embodiment, input connections for several electrode rings are spaced on the lens. In a further embodiment, liquid crystal-based lenses are provided that can increase optical power through the use of phase resets, wherein in one embodiment, a lens includes ring electrodes on surfaces of the substrates on opposite sides of the liquid crystal cell such that a fixed phase term can be added to each set of electrodes that allows for phase change across each group of electrodes to be the same and also be matched with respect to a previous group.
    Type: Application
    Filed: March 22, 2016
    Publication date: July 14, 2016
    Inventors: Philip Bos, Douglas Bryant, Lei Shi, Bentley Wall
  • Patent number: 9323113
    Abstract: Electro-optic lenses, including liquid crystals, wherein the power of the lenses can be modified by application of an electric field. In one embodiment, the liquid crystal-based lenses include ring electrodes having a resistive bridge located between adjacent electrodes, and in a preferred embodiment, input connections for several electrode rings are spaced on the lens. In a further embodiment, liquid crystal-based lenses are provided that can increase optical power through the use of phase resets, wherein in one embodiment, a lens includes ring electrodes on surfaces of the substrates on opposite sides of the liquid crystal cell such that a fixed phase term can be added to each set of electrodes that allows for phase change across each group of electrodes to be the same and also be matched with respect to a previous group.
    Type: Grant
    Filed: May 23, 2013
    Date of Patent: April 26, 2016
    Assignee: KENT STATE UNIVERSITY
    Inventors: Philip Bos, Douglas Bryant, Lei Shi, Bentley Wall
  • Patent number: 9280020
    Abstract: Electro-optic lenses, including liquid crystals, wherein the power of the lenses can be modified by application of an electric field. In one embodiment, the liquid crystal-based lenses include ring electrodes having a resistive bridge located between adjacent electrodes, and in a preferred embodiment, input connections for several electrode rings are spaced on the lens. In a further embodiment, liquid crystal-based lenses are provided that can increase optical power through the use of phase resets, wherein in one embodiment, a lens includes ring electrodes on surfaces of the substrates on opposite sides of the liquid crystal cell such that a fixed phase term can be added to each set of electrodes that allows for phase change across each group of electrodes to be the same and also be matched with respect to a previous group.
    Type: Grant
    Filed: June 17, 2010
    Date of Patent: March 8, 2016
    Assignee: KENT STATE UNIVERSITY
    Inventors: Philip Bos, Douglas Bryant, Lei Shi, Bentley Wall
  • Publication number: 20140132904
    Abstract: Electro-optic lenses, including liquid crystals, wherein the power of the lenses can be modified by application of an electric field. In one embodiment, the liquid crystal-based lenses include ring electrodes having a resistive bridge located between adjacent electrodes, and in a preferred embodiment, input connections for several electrode rings are spaced on the lens. In a further embodiment, liquid crystal-based lenses are provided that can increase optical power through the use of phase resets, wherein in one embodiment, a lens includes ring electrodes on surfaces of the substrates on opposite sides of the liquid crystal cell such that a fixed phase term can be added to each set of electrodes that allows for phase change across each group of electrodes to be the same and also be matched with respect to a previous group.
    Type: Application
    Filed: May 23, 2013
    Publication date: May 15, 2014
    Applicant: KENT STATE UNIVERSITY
    Inventors: Philip Bos, Douglas Bryant, Lei Shi, Bentley Wall
  • Publication number: 20110025955
    Abstract: Electro-optic lenses, including liquid crystals, wherein the power of the lenses can be modified by application of an electric field. In one embodiment, the liquid crystal-based lenses include ring electrodes having a resistive bridge located between adjacent electrodes, and in a preferred embodiment, input connections for several electrode rings are spaced on the lens. In a further embodiment, liquid crystal-based lenses are provided that can increase optical power through the use of phase resets, wherein in one embodiment, a lens includes ring electrodes on surfaces of the substrates on opposite sides of the liquid crystal cell such that a fixed phase term can be added to each set of electrodes that allows for phase change across each group of electrodes to be the same and also be matched with respect to a previous group.
    Type: Application
    Filed: June 17, 2010
    Publication date: February 3, 2011
    Applicant: Kent State University
    Inventors: Philip Bos, Douglas Bryant, Lei Shi, Bentley Wall
  • Publication number: 20080284973
    Abstract: A method of fabricating a liquid crystal display device by introducing a ferroelectric liquid crystal (FLC) between two substrates, contacting the FLC to a molecularly smooth edge, and aligning the FLC by introducing a temperature gradient normal to the edge. In one embodiment, the FLC is aligned by cooling it from an isotropic phase to a smectic phase at a rate that is relatively slow. For example, the cooling rate may be less than about 3 degrees Celsius per hour. In one embodiment, smectic layers are formed that are parallel to the edge. In one embodiment, the molecularly smooth edge is an air bubble.
    Type: Application
    Filed: May 16, 2008
    Publication date: November 20, 2008
    Inventors: Bentley Wall, Dmylro Reznikov, Philip Bos, Michael J. O'Callaghan, Mark A. Handschy