Patents by Inventor Benyuan Zhu

Benyuan Zhu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230059478
    Abstract: An amplified hollow-core fiber (HCF) optical transmission system for low latency communications. The optical transmission system comprises a low-latency amplified HCF cable. The low-latency amplified HCF cable comprises multiple HCF segments (or HCF spans). Between consecutive HCF segments, the system comprises low-latency remote optically pumped amplifiers (ROPAs). Each ROPA comprises a gain fiber, a wavelength division multiplexing (WDM) coupler, and an optical isolator. Preferably, the ROPAs are integrated into the HCF cable. Each ROPA is pumped by a remote optical pump source, which provides pump light to the gain fiber. The gain fiber receives an optical transmission signal from the HCF. The WDM coupler combines the pump light with the optical transmission signal, thereby allowing the gain fiber to amplify the optical transmission signal to an amplified transmission signal. The amplified signal is transmitted to another HCF segment through the optical isolator.
    Type: Application
    Filed: December 11, 2020
    Publication date: February 23, 2023
    Applicant: OFS Fitel, LLC
    Inventors: David J DiGiovanni, Brian Mangan, Benyuan Zhu
  • Publication number: 20220337015
    Abstract: An optical fiber amplifier is formed to include a grating structure inscribed within the rare earth-doped gain fiber itself, providing distributed wavelength-dependent filtering (attenuation) and minimizing the need for any type of gain-flattening filter to be used at the output of the amplifier. The grating structure may be of any suitable arrangement that provides the desired loss spectrum, for example, similar to the profile of a prior art discrete GFF. Various types of grating structures that may be used to provide distributed wavelength-dependent filtering along the gain include, but are not limited to, tilted gratings, weak Bragg gratings, long-period grating (LPG), and any suitable combination of these grating structures.
    Type: Application
    Filed: August 18, 2020
    Publication date: October 20, 2022
    Applicant: OFS Fitel, LLC
    Inventors: David J DiGiovanni, Paul S Westbrook, Benyuan Zhu
  • Patent number: 11349275
    Abstract: A fiber-based optical amplifying system for use with a multi-wavelength input optical signal operating over a predetermined bandwidth is specifically configured to eliminate the need for a separate gain-flattening filter, improving the power conversion efficiency (PCE) of the system. Both a distributed Raman amplifier (DRA) and an erbium-doped fiber amplifier (EDFA) are used, where the DRA component is configured to use a pump beam with at a power level no greater than 200 mW. The EDFA is configured to exhibit a gain profile the complements that of the DRA, while also providing amplification that is no less than 10dB at any wavelength within the system bandwidth. With these parameters, the combination of the DRA and EDFA is able to maintain an output gain deviation of less than about 2 dB.
    Type: Grant
    Filed: June 10, 2019
    Date of Patent: May 31, 2022
    Assignee: OFS FITEL, LLC
    Inventor: Benyuan Zhu
  • Publication number: 20210296844
    Abstract: A fiber amplifier that is particularly configured to provide gain across a large extent of the C-band spectral range (i.e., a gain bandwidth of at least 42 nm, preferably within the range of 46-48 nm) utilizes a specially-designed discrete Raman amplifier in combination with a high inversion level EDFA to extend the gain bandwidth of a conventional EDFA C-band optical amplifier, while maintaining the gain ripple below an acceptable value. The EDFA provides operation at a highly-inverted level and the specialized discrete Raman amplifier (sDRA) element has particular parameters (dispersion, length, effective area) selected to maintain operation within a “small gain” regime while also extending the long wavelength edge of the gain bandwidth and reducing the gain ripple attributed to the EDFA component.
    Type: Application
    Filed: August 29, 2019
    Publication date: September 23, 2021
    Applicant: OFS Fitel, LLC
    Inventor: Benyuan Zhu
  • Publication number: 20200044408
    Abstract: A fiber-based optical amplifying system for use with a multi-wavelength input optical signal operating over a predetermined bandwidth is specifically configured to eliminate the need for a separate gain-flattening filter, improving the power conversion efficiency (PCE) of the system. Both a distributed Raman amplifier (DRA) and an erbium-doped fiber amplifier (EDFA) are used, where the DRA component is configured to use a pump beam with at a power level no greater than 200 mW. The EDFA is configured to exhibit a gain profile the complements that of the DRA, while also providing amplification that is no less than 10dB at any wavelength within the system bandwidth. With these parameters, the combination of the DRA and EDFA is able to maintain an output gain deviation of less than about 2 dB.
    Type: Application
    Filed: June 10, 2019
    Publication date: February 6, 2020
    Applicant: OFS Fitel, LLC
    Inventor: Benyuan Zhu
  • Patent number: 10259742
    Abstract: An optical fiber has a core region that is doped with one or more viscosity-reducing dopants in respective amounts that are configured, such that, in a Raman spectrum with a frequency shift of approximately 600 cm?1, the fiber has a nanoscale structure having an integrated D2 line defect intensity of less than 0.025. Alternatively, the core region is doped with one or more viscosity-reducing dopants in respective amounts that are configured such that the fiber has a residual axial compressive stress with a stress magnitude of more than 20 MPa and a stress radial extent between 2 and 7 times the core radius. According to another aspect of the invention a majority of the optical propagation through the fiber is supported by an identified group of fiber regions comprising the core region and one or more adjacent cladding regions.
    Type: Grant
    Filed: February 2, 2018
    Date of Patent: April 16, 2019
    Assignee: OFS FITEL, LLC
    Inventors: Man F. Yan, Peter I. Borel, Tommy Geisler, Rasmus V. S. Jensen, Ole A. Levring, Jorgen Ostgaard Olsen, David W. Peckham, Dennis J. Trevor, Patrick W. Wisk, Benyuan Zhu
  • Publication number: 20180251397
    Abstract: An optical fiber has a core region that is doped with one or more viscosity-reducing dopants in respective amounts that are configured, such that, in a Raman spectrum with a frequency shift of approximately 600 cm?1, the fiber has a nanoscale structure having an integrated D2 line defect intensity of less than 0.025. Alternatively, the core region is doped with one or more viscosity-reducing dopants in respective amounts that are configured such that the fiber has a residual axial compressive stress with a stress magnitude of more than 20 MPa and a stress radial extent between 2 and 7 times the core radius. According to another aspect of the invention a majority of the optical propagation through the fiber is supported by an identified group of fiber regions comprising the core region and one or more adjacent cladding regions.
    Type: Application
    Filed: February 2, 2018
    Publication date: September 6, 2018
    Applicant: OFS Fitel, LLC
    Inventors: Man F. Yan, Peter I. Borel, Tommy Geisler, Rasmus V.S Jensen, Ole A. Levring, Jorgen Ostgaard Olsen, David W. Peckham, Dennis J. Trevor, Patrick W. Wisk, Benyuan Zhu
  • Patent number: 9946014
    Abstract: An optical pedestal fiber is configured to be taperable to form a tapered fiber having a mode field diameter at the tapered end that differs from the mode field diameter at the untapered end in correspondence with the difference between the cladding diameter at the tapered end and the cladding diameter at the untapered end. A plurality of such pedestal fibers can be used to construct a tapered fiber bundle coupler that provides matching of both core pitch and mode field diameter between a plurality of input fibers and individual cores of a multicore fiber. Further, the tapered fiber bundle coupler can be constructed using a plurality of fibers, in which individual fibers are configured to have different effective refractive indices, thereby suppressing crosstalk therebetween.
    Type: Grant
    Filed: June 20, 2012
    Date of Patent: April 17, 2018
    Assignee: OFS FITEL, LLC
    Inventors: Kazi S. Abedin, Thierry F. Taunay, Man F. Yan, Benyuan Zhu
  • Patent number: 9919955
    Abstract: An optical fiber has a core region that is doped with one or more viscosity-reducing dopants in respective amounts that are configured, such that, in a Raman spectrum with a frequency shift of approximately 600 cm?1, the fiber has a nanoscale structure having an integrated D2 line defect intensity of less than 0.025. Alternatively, the core region is doped with one or more viscosity-reducing dopants in respective amounts that are configured such that the fiber has a residual axial compressive stress with a stress magnitude of more than 20 MPa and a stress radial extent between 2 and 7 times the core radius. According to another aspect of the invention a majority of the optical propagation through the fiber is supported by an identified group of fiber regions comprising the core region and one or more adjacent cladding regions.
    Type: Grant
    Filed: March 31, 2016
    Date of Patent: March 20, 2018
    Assignee: OFS FITEL, LLC
    Inventors: Man F Yan, Peter I Borel, Tommy Geisler, Rasmus V Jensen, Ole A Levring, Jorgen Ostgaard Olsen, David W Peckham, Dennis J Trevor, Patrick W Wisk, Benyuan Zhu
  • Patent number: 9759585
    Abstract: In a TDM- and WDM-based FBG sensor array system, a source emits a light covering a selected wavelength range. The light is amplified and then used to generate a series of pulses that are fed into an array of sensor gratings. The propagation of a pulse through the sensor array results in a time-domain-multiplexed output, comprising a series of output pulses in which each output pulse comprises a reflection of the input pulse at a respective grating in the sensor array. Raman amplification is used to amplify both the pulse input into and the time-domain multiplexed output from the sensor array, which is then coupled into an output processing stage for receiving the sensor output and for reconstructing the wavelength output of each grating in the sensor array. The wavelength change for each grating is then used to calculate a physical parameter(s) to be measured, such as temperature and/or strain.
    Type: Grant
    Filed: March 4, 2013
    Date of Patent: September 12, 2017
    Assignee: OFS FITEL, LLC
    Inventors: William R Holland, Yaowen Li, Jeffrey W Nicholson, Yingzhi Sun, Benyuan Zhu
  • Publication number: 20170022094
    Abstract: An optical fiber has a core region that is doped with one or more viscosity-reducing dopants in respective amounts that are configured, such that, in a Raman spectrum with a frequency shift of approximately 600 cm?, the fiber has a nanoscale structure having an integrated D2 line defect intensity of less than 0.025. Alternatively, the core region is doped with one or more viscosity-reducing dopants in respective amounts that are configured such that the fiber has a residual axial compressive stress with a stress magnitude of more than 20 MPa and a stress radial extent between 2 and 7 times the core radius. According to another aspect of the invention a majority of the optical propagation through the fiber is supported by an identified group of fiber regions comprising the core region and one or more adjacent cladding regions.
    Type: Application
    Filed: March 31, 2016
    Publication date: January 26, 2017
    Applicant: OFS Fitel, LLC
    Inventors: Man F. Yan, Peter I. Borel, Tommy Geisler, Rasmus V. Jensen, Ole A. Levring, Jorgen Ostgaard Olsen, David W. Peckham, Dennis J. Trevor, Patrick W. Wisk, Benyuan Zhu
  • Patent number: 9497523
    Abstract: A passive, coexisting 10 Gb/s passive optical network (XGPON) and Gb/s passive optical network (GPON) is created by using a pair of counter-propagating laser pump sources at a network-based optical line terminal, in combination with a feeder fiber, to create distributed Raman amplification for the upstream signals associated with both GPON and XGPON systems. A passive remote node is located at the opposite end of the feeder fiber, in the vicinity of a group of end-user locations, and includes a cyclic WDM and a pair of power splitters for the GPON and XGPON signals such that the GPON signals are thereafter directed through a first power splitter into optical network units (ONUs) specifically configured for GPON wavelengths and XGPON signals are directed through a second power splitter into ONUs configured for the XGPON wavelengths. The arrangement of the remote node allows for the reach and split ratios of the GPON and XGPON systems to be individually designed for optimum performance.
    Type: Grant
    Filed: September 10, 2012
    Date of Patent: November 15, 2016
    Assignee: OFS FITEL, LLC
    Inventor: Benyuan Zhu
  • Patent number: 9379512
    Abstract: Systems and methods for reducing cost and amplifier module size are disclosed. One system comprises an arrayed optical fiber amplifier that uses a ribbonized fiber that permits reduction of amplifier module size and also reduction in the cost of manufacturing that are not readily achievable in other currently-available systems.
    Type: Grant
    Filed: February 27, 2015
    Date of Patent: June 28, 2016
    Assignee: OFS FITEL, LLC
    Inventors: David J DiGiovanni, Benyuan Zhu
  • Publication number: 20160011018
    Abstract: In a TDM- and WDM-based FBG sensor array system, a source emits a light covering a selected wavelength range. The light is amplified and then used to generate a series of pulses that are fed into an array of sensor gratings. The propagation of a pulse through the sensor array results in a time-domain-multiplexed output, comprising a series of output pulses in which each output pulse comprises a reflection of the input pulse at a respective grating in the sensor array. Raman amplification is used to amplify both the pulse input into and the time-domain multiplexed output from the sensor array, which is then coupled into an output processing stage for receiving the sensor output and for reconstructing the wavelength output of each grating in the sensor array. The wavelength change for each grating is then used to calculate a physical parameter(s) to be measured, such as temperature and/or strain.
    Type: Application
    Filed: March 4, 2013
    Publication date: January 14, 2016
    Inventors: William R Holland, Yaowen Li, Jeffrey W Nicholson, Yingzhi Sun, Benyuan Zhu
  • Patent number: 9231365
    Abstract: A discrete Raman amplifier comprises a Raman gain fiber, an input port into the Raman gain fiber for receiving optical signals to be Raman amplified, and an output port out of the Raman gain fiber for emitting Raman-amplified optical signals. A pump light input provides pump light to the Raman gain fiber at a plurality of wavelengths so as to provide Raman amplification over the selected signal wavelength range. Within both the pump light wavelength range and the selected signal wavelength range, the Raman gain fiber has only positive chromatic dispersion, and the Raman gain fiber has a moderate effective area.
    Type: Grant
    Filed: June 12, 2014
    Date of Patent: January 5, 2016
    Assignee: OFS FITEL, LLC
    Inventors: Patrick W Wisk, Man F Yan, Benyuan Zhu
  • Publication number: 20150364897
    Abstract: A discrete Raman amplifier comprises a Raman gain fiber, an input port into the Raman gain fiber for receiving optical signals to be Raman amplified, and an output port out of the Raman gain fiber for emitting Raman-amplified optical signals. A pump light input provides pump light to the Raman gain fiber at a plurality of wavelengths so as to provide Raman amplification over the selected signal wavelength range. Within both the pump light wavelength range and the selected signal wavelength range, the Raman gain fiber has only positive chromatic dispersion, and the Raman gain fiber has a moderate effective area.
    Type: Application
    Filed: June 12, 2014
    Publication date: December 17, 2015
    Applicant: OFS FITEL, LLC
    Inventors: Patrick W. Wisk, Man F. Yan, Benyuan Zhu
  • Patent number: 9195000
    Abstract: An optical fiber has two or more core regions disposed within a common cladding region. Each of the core regions is configured to guide a respective light transmission comprising at least one optical mode along the length of the fiber. The cores are arranged within the common cladding region according to a core configuration that substantially prevents crosstalk between modes of neighboring cores in the fiber, in a deployment of the fiber in which cross-coupling between neighboring cores is affected by perturbations arising in the deployed fiber.
    Type: Grant
    Filed: October 12, 2011
    Date of Patent: November 24, 2015
    Assignee: OFS FITEL, LLC.
    Inventors: John M Fini, Thierry Franck Taunay, Man F Yan, Benyuan Zhu
  • Patent number: 9164230
    Abstract: A high-powered double cladding (DC) pumped Ytterbium-free L-band Erbium doped fiber amplifier (EDFA) for dense-wavelength-division multiplexing (DWDM) is disclosed. The DC pumped Ytterbium-free L-band EDFA comprises a length of DC Erbium-doped fiber (EDF) that has a low-index, large-diameter core. For some embodiments, the DC-EDF also comprises a trench that is located radially exterior to the cladding, thereby increasing cladding absorption while still effectively maintaining single-mode behavior.
    Type: Grant
    Filed: August 27, 2013
    Date of Patent: October 20, 2015
    Assignee: OFS FITEL, LLC
    Inventor: Benyuan Zhu
  • Publication number: 20150295382
    Abstract: Systems and methods for reducing cost and amplifier module size are disclosed. One system comprises an arrayed optical fiber amplifier that uses a ribbonized fiber that permits reduction of amplifier module size and also reduction in the cost of manufacturing that are not readily achievable in other currently-available systems.
    Type: Application
    Filed: February 27, 2015
    Publication date: October 15, 2015
    Applicant: OFS FITEL, LLC
    Inventors: David J. DiGiovanni, Benyuan Zhu
  • Patent number: 9025239
    Abstract: A double-clad (DC) multicore (MC) Erbium-doped fiber amplifier (EDFA) for dense-wavelength-division multiplexing (DWDM) is disclosed. The DC-MC-EDFA comprises a length of DC-MC Erbium-doped fiber (EDF) that is core-matched spliced to a MC tapered signal-pump fiber combiner (TFC). For some embodiments, the optical signals are coupled into the DC-MC-EDF by the MC-TFC, and the pump energy is also coupled into the DC-MC-EDF by the MC-TFC. For some embodiments, the optical signals are also transmitted out of the DC-MC-EDF through the MC-TFC.
    Type: Grant
    Filed: March 13, 2013
    Date of Patent: May 5, 2015
    Assignee: OFS Fitel, LLC
    Inventor: Benyuan Zhu