Patents by Inventor Bera Palsdottir

Bera Palsdottir has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9366811
    Abstract: A highly nonlinear optical fiber having an improved stimulated Brillouin scattering threshold is provided. The fiber includes a central core region made substantially from silica doped with aluminum, a trench region surrounding the central core region, and a silica cladding surrounding the trench region. The refractive index profile of the fiber is optimized. A refractive index difference of the central core region relative to the cladding (?n+) is less than 26×10?3, and more preferably at or near 21×10?3. A refractive index difference of the trench region relative to the cladding (?n?) is less than ?5×10?3. The trench region is preferably doped with fluorine. The aluminum doping level of the central core region is preferably less than 14 wt % Al. A fiber doped with aluminum having this refractive index profile exhibits a significantly higher figure of merit (Pth?Leff) than conventional germanium-doped fibers.
    Type: Grant
    Filed: March 4, 2013
    Date of Patent: June 14, 2016
    Assignee: OFS FITEL, LLC
    Inventors: Lars Gruner-Nielsen, Soren Herstrom, Dan Peter Jakobsen, Bera Palsdottir
  • Patent number: 9093815
    Abstract: A rare earth doped optical fiber amplifier is configured to have an enlarged core region and a trench formed adjacent to the core, where at least an inner portion of the trench is also formed to include a rare earth dopant. The presence of the rare earth dopant in the inner region of the cladding minimizes transient power fluctuations within the amplifier as the number of optical signals being amplified changes. The addition of rare earth dopant to the cladding increases the overlap between the pump, signal and the rare earth ions and thus improves the gain efficiency for the optical signal. The relatively large core diameter increases the saturation power level of the rare earth dopant and decreases the transients present in the gain as the input signal power fluctuates.
    Type: Grant
    Filed: August 27, 2013
    Date of Patent: July 28, 2015
    Assignee: OFS Fitel, LLC
    Inventors: Soren Herstrom, Kwang S Kim, Bera Palsdottir, Gabriel Puc, Thierry F Taunay
  • Publication number: 20150016792
    Abstract: A highly nonlinear optical fiber having an improved stimulated Brillouin scattering threshold is provided. The fiber includes a central core region made substantially from silica doped with aluminum, a trench region surrounding the central core region, and a silica cladding surrounding the trench region. The refractive index profile of the fiber is optimized. A refractive index difference of the central core region relative to the cladding (?n+) is less than 26×10?3, and more preferably at or near 21×10?3. A refractive index difference of the trench region relative to the cladding (?n?) is less than ?5×10?3. The trench region is preferably doped with fluorine. The aluminum doping level of the central core region is preferably less than 14 wt % Al. A fiber doped with aluminum having this refractive index profile exhibits a significantly higher figure of merit (Pth?Leff) than conventional germanium-doped fibers.
    Type: Application
    Filed: March 4, 2013
    Publication date: January 15, 2015
    Applicant: OFS Fitel, LLC
    Inventors: Lars Gruner-Nielsen, Soren Herstrom, Dan Peter Jakobsen, Bera Palsdottir
  • Publication number: 20140063594
    Abstract: A rare earth doped optical fiber amplifier is configured to have an enlarged core region and a trench formed adjacent to the core, where at least an inner portion of the trench is also formed to include a rare earth dopant. The presence of the rare earth dopant in the inner region of the cladding minimizes transient power fluctuations within the amplifier as the number of optical signals being amplified changes. The addition of rare earth dopant to the cladding increases the overlap between the pump, signal and the rare earth ions and thus improves the gain efficiency for the optical signal. The relatively large core diameter increases the saturation power level of the rare earth dopant and decreases the transients present in the gain as the input signal power fluctuates.
    Type: Application
    Filed: August 27, 2013
    Publication date: March 6, 2014
    Inventors: Soren Herstrom, Kwang S. Kim, Bera Palsdottir, Gabriel Puc, Thierry F. Taunay
  • Patent number: 7221838
    Abstract: An optical fiber has a core region and a first cladding region surrounding the core. The first cladding region is doped to increase the fiber's refractive index volume. A second cladding region surrounds the first cladding region. The second cladding region is doped to reduce the fiber's cutoff wavelength, offsetting an increase in the fiber's cutoff wavelength caused by the first cladding region. An outer cladding surrounds the cutoff reduction region. In a further embodiment, the volume increasing region is doped to have a refractive index profile that is sloped to increase from the region's outer circumference towards its inner circumference. In another embodiment, the cutoff reduction region has a step refractive index profile that may have more than one section.
    Type: Grant
    Filed: June 23, 2004
    Date of Patent: May 22, 2007
    Assignee: Furukawa Electric North America, Inc.
    Inventors: Dan Jakobsen, Bera Palsdottir, Torben E. Veng
  • Publication number: 20050286848
    Abstract: An optical fiber has a core region and a first cladding region surrounding the core. The first cladding region is doped to increase the fiber's refractive index volume. A second cladding region surrounds the first cladding region. The second cladding region is doped to reduce the fiber's cutoff wavelength, offsetting an increase in the fiber's cutoff wavelength caused by the first cladding region. An outer cladding surrounds the cutoff reduction region. In a further embodiment, the volume increasing region is doped to have a refractive index profile that is sloped to increase from the region's outer circumference towards its inner circumference. In another embodiment, the cutoff reduction region has a step refractive index profile that may have more than one section.
    Type: Application
    Filed: June 23, 2004
    Publication date: December 29, 2005
    Applicant: Furukawa Electric North America, Inc.
    Inventors: Dan Jakobsen, Bera Palsdottir, Torben Veng
  • Patent number: 6816657
    Abstract: A pumped Raman fiber optic amplifier includes two optical fibers whose lengths are determined so that the fibers exhibit dispersions of substantially equal magnitude and opposite sign at the wavelength of an input light signal. The fiber having the positive dispersion has a cylindrical core, an outer cladding, and a refractive index profile with respect to the outer cladding. The core has a diameter of between 3 and 6 microns (&mgr;m) and a difference (&Dgr;n) between the index of the core and the cladding is between 0.015 and 0.035. The index profile includes a trench region adjacent the circumference of the core, and the trench region has a width of between 1 and 4 &mgr;m and a &Dgr;n of between −0.005 and −0.015. The two fibers are slope matched so that the net dispersion of the amplifier remains substantially zero over a broad wavelength interval.
    Type: Grant
    Filed: May 8, 2002
    Date of Patent: November 9, 2004
    Assignee: Furukawa Electric North America, Inc.
    Inventors: Peter Gaarde, Lars Gruner-Nielsen, Bera Palsdottir
  • Publication number: 20040052486
    Abstract: An optical fiber suited for dispersion compensation with simultaneous Raman amplification. The fiber has a central core and an index profile that defines successively concentric regions radially outward of the core. The core has a diameter of between 2 and 5 microns (&mgr;m) and a refractive index difference (&Dgr;n) with respect to the outer cladding of between 0.012 and 0.035. A trench region adjacent the core is between 2 and 6 &mgr;m wide and has a negative &Dgr;n of between −0.015 and −0.003. A ring region adjacent the trench region is between 1 and 5 &mgr;m wide and has a &Dgr;n of between 0.001 and 0.015, and an inner cladding surrounding the ring region has a width of between zero and 5 &mgr;m and a &Dgr;n of between −0.011 and 0.001. A dispersion slope compensating module (DSCM) including the fiber obtains a relatively high Raman gain with respect to conventional DSCMs that are pumped for Raman amplification.
    Type: Application
    Filed: September 13, 2002
    Publication date: March 18, 2004
    Applicant: Fitel USA Corp.
    Inventors: Peter Gaarde, Lars Gruner-Nielsen, Christian Larsen, Bera Palsdottir, Yujun Qian
  • Publication number: 20030210876
    Abstract: A pumped Raman fiber optic amplifier includes two optical fibers whose lengths are determined so that the fibers exhibit dispersions of substantially equal magnitude and opposite sign at the wavelength of an input light signal. The fiber having the positive dispersion has a cylindrical core, an outer cladding, and a refractive index profile with respect to the outer cladding. The core has a diameter of between 3 and 6 microns (&mgr;m) and a difference (&Dgr;n) between the index of the core and the cladding is between 0.015 and 0.035. The index profile includes a trench region adjacent the circumference of the core, and the trench region has a width of between 1 and 4 &mgr;m and a &Dgr;n of between −0.005 and −0.015. The two fibers are slope matched so that the net dispersion of the amplifier remains substantially zero over a broad wavelength interval.
    Type: Application
    Filed: May 8, 2002
    Publication date: November 13, 2003
    Applicant: Fitel USA Corp.
    Inventors: Peter Gaarde, Lars Gruner-Nielsen, Bera Palsdottir
  • Patent number: 6560009
    Abstract: The specification describes rare earth doped fiber amplifier devices for operation in the extended L-band, i.e. at wavelengths from 1565 nm to above 1610 nm. High efficiency and flat gain spectra are obtained using a high silica based fiber codoped with Er, Al, Ge, and P and an NA of at least 0.15.
    Type: Grant
    Filed: August 21, 2001
    Date of Patent: May 6, 2003
    Assignee: Lucent Technologies Inc.
    Inventors: Matthew Julius Andrejco, Inger Pihl Byriel, Bera Palsdottir
  • Publication number: 20030076580
    Abstract: The specification describes rare earth doped fiber amplifier devices for operation in the extended L-band, i.e. at wavelengths from 1565 nm to above 1610 nm. High efficiency and flat gain spectra are obtained using a high silica based fiber codoped with Er, Al, Ge, and P and an NA of at least 0.15.
    Type: Application
    Filed: August 21, 2001
    Publication date: April 24, 2003
    Inventors: Matthew Julius Andrejco, Inger Pihl Byriel, Bera Palsdottir
  • Patent number: 6504973
    Abstract: A Raman amplified dispersion compensation module has a first dispersion compensating fiber (DCF) with an input end and an output end. The first DCF has a known Raman gain coefficient (gr(&lgr;)), Raman effective fiber area (AReff), and dispersion characteristic. An input end of a second DCF is arranged to receive light signals from the output end of the first DCF. The second DCF has a known gain coefficient and effective area, and a dispersion characteristic selected to cooperate with that of the first DCF to produce a desired total module dispersion. The lengths of the DCFs are selected in a manner that optimizes the overall module gain.
    Type: Grant
    Filed: March 16, 2002
    Date of Patent: January 7, 2003
    Assignee: Fitel USA Corp.
    Inventors: David J. DiGiovanni, William Alfred Reed, Jeffrey W. Nicholson, Man Fei Yan, Bera Palsdottir
  • Patent number: 6151429
    Abstract: A method of producing an active optical waveguide having asymmetric polarization, said method comprising the steps of (a) providing an active optical waveguide (10) comprising: (i) a transverse refractive index profile (21) comprising a guiding region (11), an intermediate region (13), and a non-guiding region (12); (ii) a transverse photorefractive dopant profile (31) comprising a constant or graded photorefractive dopant concentration within at least one of the guiding, non-guiding and intermediate regions, except that the photorefractive dopant is not located solely in the guiding region; and (iii) exhibiting in said guiding region, intermediate region, or both, light guiding modes having different polarizations; and (b) exposing at least a part (10a, 10b) of the active optical waveguide to an effective transverse illumination of light (20) reacting with the photorefractive dopant and modifying said transverse refractive index profile; said part of the active optical waveguide being exposed to a fluence se
    Type: Grant
    Filed: July 30, 1999
    Date of Patent: November 21, 2000
    Assignees: Ionas A/A, Lucent Tech, Denmark
    Inventors: Martin Kristensen, Jorg Hubner, Poul Varming, Milan Sejka, Bera Palsdottir