Patents by Inventor Berardi Sensale-Rodriguez

Berardi Sensale-Rodriguez has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11563078
    Abstract: Ultra-compact inductor devices for use in integrated circuits (e.g., RF ICs) that use 3-dimensional Dirac materials for providing the inductor. Whereas inductors currently require significant real estate on an integrated circuit, because they require use of an electrically conductive winding around an insulative core, or such metal deposited in a spiral geometry, the present devices can be far more compact, occupying significantly less space on an integrated circuit. For example, an ultra-compact inductor that could be included in an integrated circuit may include a 3-dimensional Dirac material formed into a geometric shape capable of inductance (e.g., as simple as a stripe or series of stripes of such material), deposited on a substantially non-conductive (i.e., insulative) substrate, on which the Dirac material in the selected geometric shape is positioned. Low temperature manufacturing methods compatible with CMOS manufacturing are also provided.
    Type: Grant
    Filed: March 12, 2020
    Date of Patent: January 24, 2023
    Assignee: THE UNIVERSITY OF UTAH RESEARCH FOUNDATION
    Inventors: Berardi Sensale Rodriguez, Ashish Chanana, Steven M Blair, Vikram Deshpande, Michael A Scarpulla, Hugo Orlando Condori, Jeffrey Walling
  • Publication number: 20210288136
    Abstract: Ultra-compact inductor devices for use in integrated circuits (e.g., RF ICs) that use 3-dimensional Dirac materials for providing the inductor. Whereas inductors currently require significant real estate on an integrated circuit, because they require use of an electrically conductive winding around an insulative core, or such metal deposited in a spiral geometry, the present devices can be far more compact, occupying significantly less space on an integrated circuit. For example, an ultra-compact inductor that could be included in an integrated circuit may include a 3-dimensional Dirac material formed into a geometric shape capable of inductance (e.g., as simple as a stripe or series of stripes of such material), deposited on a substantially non-conductive (i.e., insulative) substrate, on which the Dirac material in the selected geometric shape is positioned. Low temperature manufacturing methods compatible with CMOS manufacturing are also provided.
    Type: Application
    Filed: March 12, 2020
    Publication date: September 16, 2021
    Inventors: Berardi Sensale-Rodriguez, Ashish Chanana, Steven M. Blair, Vikram Deshpande, Michael A. Scarpulla, Hugo Orlando Condori, Jeffrey Walling
  • Patent number: 8836446
    Abstract: A wave amplitude modulator for modulating a transmitted electromagnetic wave includes one or multiple self-gated capacitively coupled pair(s) of electron layers such as semiconductor or semimetal layers. Two electrical contacts are placed to each layer of electrons of the self-gated pair(s), and a power source is electrically connected to them. The power source, by varying the voltage applied between layers of electrons, tunes the electron density thereof, thereby adjusting the optical conductivity thereof, and the change in the optical conductivity of the layers of electrons causes an amplitude modulation of the transmitted electromagnetic wave passing through the capacitively coupled layers of electrons.
    Type: Grant
    Filed: June 21, 2012
    Date of Patent: September 16, 2014
    Assignee: University of Notre Dame du Lac
    Inventors: Berardi Sensale-Rodriguez, Huili (Grace) Xing, Rusen Yan, Michelle M. Kelly, Tian Fang, Debdeep Jena, Lei Liu
  • Publication number: 20130342279
    Abstract: A wave amplitude modulator for modulating a transmitted electromagnetic wave includes one or multiple self-gated capacitively coupled pair(s) of electron layers such as semiconductor or semimetal layers. Two electrical contacts are placed to each layer of electrons of the self-gated pair(s), and a power source is electrically connected to them. The power source, by varying the voltage applied between layers of electrons, tunes the electron density thereof, thereby adjusting the optical conductivity thereof, and the change in the optical conductivity of the layers of electrons causes an amplitude modulation of the transmitted electromagnetic wave passing through the capacitively coupled layers of electrons.
    Type: Application
    Filed: June 21, 2012
    Publication date: December 26, 2013
    Applicant: UNIVERSITY OF NOTRE DAME DU LAC
    Inventors: Berardi Sensale-Rodriguez, Rusen Yan, Huili (Grace) Xing, Michelle M. Kelly, Tian Fang, Debdeep Jena, Lei Liu