Patents by Inventor Bernard Fidric

Bernard Fidric has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240085530
    Abstract: Described herein is a LIDAR device that may include a transmitter, first and second receivers, and a rotating platform. The transmitter may be configured to emit light having a vertical beam width. The first receiver may be configured to detect light at a first resolution while scanning the environment with a first FOV and the second receiver may be configured to detect light at a second resolution while scanning the environment with a second FOV. In this arrangement, the first resolution may be higher than the second resolution, the first FOV may be at least partially different from the second FOV, and the vertical beam width may encompass at least a vertical extent of the first and second FOVs. Further, the rotating platform may be configured to rotate about an axis such that the transmitter and first and second receivers each move based on the rotation.
    Type: Application
    Filed: November 19, 2023
    Publication date: March 14, 2024
    Inventors: Pierre-Yves Droz, Caner Onal, William McCann, Bernard Fidric, Vadim Gutnik, Laila Mattos, Rahim Pardhan
  • Patent number: 11860305
    Abstract: Described herein is a LIDAR device that may include a transmitter, first and second receivers, and a rotating platform. The transmitter may be configured to emit light having a vertical beam width. The first receiver may be configured to detect light at a first resolution while scanning the environment with a first FOV and the second receiver may be configured to detect light at a second resolution while scanning the environment with a second FOV. In this arrangement, the first resolution may be higher than the second resolution, the first FOV may be at least partially different from the second FOV, and the vertical beam width may encompass at least a vertical extent of the first and second FOVs. Further, the rotating platform may be configured to rotate about an axis such that the transmitter and first and second receivers each move based on the rotation.
    Type: Grant
    Filed: June 26, 2019
    Date of Patent: January 2, 2024
    Assignee: Waymo LLC
    Inventors: Pierre-Yves Droz, Caner Onal, William McCann, Bernard Fidric, Vadim Gutnik, Laila Mattos, Rahim Pardhan
  • Patent number: 11843217
    Abstract: The present disclosure relates to a fiber encapsulation mechanism for energy dissipation in a fiber amplifying system. One example embodiment includes an optical fiber amplifier. The optical fiber amplifier includes an optical fiber that includes a gain medium, as well as a polymer layer that at least partially surrounds the optical fiber. The polymer layer is optically transparent. In addition, the optical fiber amplifier includes a pump source. Optical pumping by the pump source amplifies optical signals in the optical fiber and generates excess heat and excess photons. The optical fiber amplifier additionally includes a heatsink layer disposed adjacent to the polymer layer. The heatsink layer conducts the excess heat away from the optical fiber. Further, the optical fiber amplifier includes an optically transparent layer disposed adjacent to the polymer layer. The optically transparent layer transmits the excess photons away from the optical fiber.
    Type: Grant
    Filed: April 1, 2021
    Date of Patent: December 12, 2023
    Assignee: Waymo LLC
    Inventors: Bernard Fidric, Daniel Rosenfeld, Rahim Pardhan
  • Patent number: 11422479
    Abstract: Systems and methods described herein relate to the manufacture of optical elements and optical systems. An example method includes overlaying a first mask on a photoresist material and a substrate, and causing a light source to illuminate the photoresist material through the first mask during a first exposure so as to define a first feature. During the first exposure, the light source is positioned at a non-normal angle with respect to a plane parallel to the substrate. The method includes developing the photoresist material so as to retain an elongate portion of the photoresist material on the substrate. A first end of the elongate portion includes an angled portion that is sloped at an angle with respect to a long axis of the elongate portion. The method also includes depositing a reflective material through a second mask onto the angled portion.
    Type: Grant
    Filed: March 1, 2021
    Date of Patent: August 23, 2022
    Assignee: Waymo LLC
    Inventors: Bernard Fidric, Pierre-Yves Droz, David Hutchison
  • Publication number: 20220120900
    Abstract: The subject matter of this specification relates to a light detection and ranging (LiDAR) device that comprises, in some implementations, a pulsed-laser source configured to generate a pulsed optical signal, a continuous wave (CW) laser source configured to generate a CW optical signal, one or more optical amplifier circuits configured to amplify at least the pulsed optical signal, a combiner configured to combine the pulsed optical signal and the CW optical signal into a hybrid transmission signal, and at least one photodetector configured to receive a reflection signal produced by reflection of the hybrid transmission signal by a target.
    Type: Application
    Filed: October 13, 2021
    Publication date: April 21, 2022
    Inventors: Bernard Fidric, Pierre-Yves Droz, Michael R. Matthews, Pablo Hopman, John Lam
  • Publication number: 20210333361
    Abstract: Systems and methods are described that relate to a light detection and ranging (LIDAR) device. The LIDAR device includes a fiber laser configured to emit light within a wavelength range, a scanning portion configured to direct the emitted light in a reciprocating manner about a first axis, and a plurality of detectors configured to sense light within the wavelength range. The device additionally includes a controller configured to receive target information, which may be indicative of an object, a position, a location, or an angle range. In response to receiving the target information, the controller may cause the rotational mount to rotate so as to adjust a pointing direction of the LIDAR. The controller is further configured to cause the LIDAR to scan a field-of-view (FOV) of the environment. The controller may determine a three-dimensional (3D) representation of the environment based on data from scanning the FOV.
    Type: Application
    Filed: July 2, 2021
    Publication date: October 28, 2021
    Inventors: Pierre-yves Droz, Gaetan Pennecot, Anthony Levandowski, Drew Eugene Ulrich, Zach Morriss, Luke Wachter, Dorel Ionut Iordache, William McCann, Daniel Gruver, Bernard Fidric, Samuel William Lenius
  • Publication number: 20210278503
    Abstract: A vehicle is provided that includes one or more wheels positioned at a bottom side of the vehicle. The vehicle also includes a first light detection and ranging device (LIDAR) positioned at a top side of the vehicle opposite to the bottom side. The first LIDAR is configured to scan an environment around the vehicle based on rotation of the first LIDAR about an axis. The first LIDAR has a first resolution. The vehicle also includes a second LIDAR configured to scan a field-of-view of the environment that extends away from the vehicle along a viewing direction of the second LIDAR. The second LIDAR has a second resolution. The vehicle also includes a controller configured to operate the vehicle based on the scans of the environment by the first LIDAR and the second LIDAR.
    Type: Application
    Filed: March 8, 2021
    Publication date: September 9, 2021
    Inventors: Gaetan Pennecot, Zachary Morriss, Samuel Lenius, Dorel lonut lordache, Daniel Gruver, Pierre-Yves Droz, Luke Wachter, Drew Ulrich, William McCann, Rahim Pardhan, Bernard Fidric, Anthony Levandowski, Peter Avram
  • Publication number: 20210226401
    Abstract: The present disclosure relates to a fiber encapsulation mechanism for energy dissipation in a fiber amplifying system. One example embodiment includes an optical fiber amplifier. The optical fiber amplifier includes an optical fiber that includes a gain medium, as well as a polymer layer that at least partially surrounds the optical fiber. The polymer layer is optically transparent. In addition, the optical fiber amplifier includes a pump source. Optical pumping by the pump source amplifies optical signals in the optical fiber and generates excess heat and excess photons. The optical fiber amplifier additionally includes a heatsink layer disposed adjacent to the polymer layer. The heatsink layer conducts the excess heat away from the optical fiber. Further, the optical fiber amplifier includes an optically transparent layer disposed adjacent to the polymer layer. The optically transparent layer transmits the excess photons away from the optical fiber.
    Type: Application
    Filed: April 1, 2021
    Publication date: July 22, 2021
    Inventors: Bernard Fidric, Daniel Rosenfeld, Rahim Pardhan
  • Publication number: 20210208506
    Abstract: Systems and methods described herein relate to the manufacture of optical elements and optical systems. An example method includes overlaying a first mask on a photoresist material and a substrate, and causing a light source to illuminate the photoresist material through the first mask during a first exposure so as to define a first feature. During the first exposure, the light source is positioned at a non-normal angle with respect to a plane parallel to the substrate. The method includes developing the photoresist material so as to retain an elongate portion of the photoresist material on the substrate. A first end of the elongate portion includes an angled portion that is sloped at an angle with respect to a long axis of the elongate portion. The method also includes depositing a reflective material through a second mask onto the angled portion.
    Type: Application
    Filed: March 1, 2021
    Publication date: July 8, 2021
    Inventors: Bernard Fidric, Pierre-Yves Droz, David Hutchison
  • Patent number: 11054505
    Abstract: Systems and methods are described that relate to a light detection and ranging (LIDAR) device. The LIDAR device includes a fiber laser configured to emit light within a wavelength range, a scanning portion configured to direct the emitted light in a reciprocating manner about a first axis, and a plurality of detectors configured to sense light within the wavelength range. The device additionally includes a controller configured to receive target information, which may be indicative of an object, a position, a location, or an angle range. In response to receiving the target information, the controller may cause the rotational mount to rotate so as to adjust a pointing direction of the LIDAR. The controller is further configured to cause the LIDAR to scan a field-of-view (FOV) of the environment. The controller may determine a three-dimensional (3D) representation of the environment based on data from scanning the FOV.
    Type: Grant
    Filed: January 26, 2018
    Date of Patent: July 6, 2021
    Assignee: Waymo LLC
    Inventors: Pierre-yves Droz, Gaetan Pennecot, Anthony Levandowski, Drew Eugene Ulrich, Zach Morriss, Luke Wachter, Dorel Ionut Iordache, William McCann, Daniel Gruver, Bernard Fidric, Samuel William Lenius
  • Publication number: 20210165097
    Abstract: An example method involves rotating a sensor that emits light pulses and detects reflections of the emitted light pulses based on a pointing direction of the sensor. The method also involves identifying a range of pointing directions of the sensor that are associated with a target region of an environment. The method also involves determining whether a current pointing direction of the sensor is within the identified range. The method also involves modulating the emitted light pulses according to a first modulation scheme in response to a determination that the current pointing direction is within the identified range. The method also involves modulating the emitted light pulses according to a second modulation scheme in response to a determination that the current pointing direction is outside the identified range. The second modulation scheme is different than the first modulation scheme.
    Type: Application
    Filed: February 8, 2021
    Publication date: June 3, 2021
    Inventors: Pierre-Yves Droz, Bernard Fidric
  • Patent number: 10992096
    Abstract: The present disclosure relates to a fiber encapsulation mechanism for energy dissipation in a fiber amplifying system. One example embodiment includes an optical fiber amplifier. The optical fiber amplifier includes an optical fiber that includes a gain medium, as well as a polymer layer that at least partially surrounds the optical fiber. The polymer layer is optically transparent. In addition, the optical fiber amplifier includes a pump source. Optical pumping by the pump source amplifies optical signals in the optical fiber and generates excess heat and excess photons. The optical fiber amplifier additionally includes a heatsink layer disposed adjacent to the polymer layer. The heatsink layer conducts the excess heat away from the optical fiber. Further, the optical fiber amplifier includes an optically transparent layer disposed adjacent to the polymer layer. The optically transparent layer transmits the excess photons away from the optical fiber.
    Type: Grant
    Filed: May 7, 2018
    Date of Patent: April 27, 2021
    Assignee: Waymo LLC
    Inventors: Bernard Fidric, Daniel Rosenfeld, Rahim Pardhan
  • Patent number: 10976437
    Abstract: A vehicle is provided that includes one or more wheels positioned at a bottom side of the vehicle. The vehicle also includes a first light detection and ranging device (LIDAR) positioned at a top side of the vehicle opposite to the bottom side. The first LIDAR is configured to scan an environment around the vehicle based on rotation of the first LIDAR about an axis. The first LIDAR has a first resolution. The vehicle also includes a second LIDAR configured to scan a field-of-view of the environment that extends away from the vehicle along a viewing direction of the second LIDAR. The second LIDAR has a second resolution. The vehicle also includes a controller configured to operate the vehicle based on the scans of the environment by the first LIDAR and the second LIDAR.
    Type: Grant
    Filed: September 26, 2017
    Date of Patent: April 13, 2021
    Assignee: Waymo LLC
    Inventors: Gaetan Pennecot, Zachary Morriss, Samuel Lenius, Dorel Ionut Iordache, Daniel Gruver, Pierre-Yves Droz, Luke Wachter, Drew Ulrich, William Mccann, Rahim Pardhan, Bernard Fidric, Anthony Levandowski, Peter Avram
  • Patent number: 10962883
    Abstract: Systems and methods described herein relate to the manufacture of optical elements and optical systems. An example method includes overlaying a first mask on a photoresist material and a substrate, and causing a light source to illuminate the photoresist material through the first mask during a first exposure so as to define a first feature. During the first exposure, the light source is positioned at a non-normal angle with respect to a plane parallel to the substrate. The method includes developing the photoresist material so as to retain an elongate portion of the photoresist material on the substrate. A first end of the elongate portion includes an angled portion that is sloped at an angle with respect to a long axis of the elongate portion. The method also includes depositing a reflective material through a second mask onto the angled portion.
    Type: Grant
    Filed: November 15, 2019
    Date of Patent: March 30, 2021
    Assignee: Waymo LLC
    Inventors: Bernard Fidric, Pierre-yves Droz, David Hutchison
  • Patent number: 10942272
    Abstract: An example method involves rotating a sensor that emits light pulses and detects reflections of the emitted light pulses based on a pointing direction of the sensor. The method also involves identifying a range of pointing directions of the sensor that are associated with a target region of an environment. The method also involves determining whether a current pointing direction of the sensor is within the identified range. The method also involves modulating the emitted light pulses according to a first modulation scheme in response to a determination that the current pointing direction is within the identified range. The method also involves modulating the emitted light pulses according to a second modulation scheme in response to a determination that the current pointing direction is outside the identified range. The second modulation scheme is different than the first modulation scheme.
    Type: Grant
    Filed: December 13, 2016
    Date of Patent: March 9, 2021
    Assignee: Waymo LLC
    Inventors: Pierre-Yves Droz, Bernard Fidric
  • Patent number: 10693272
    Abstract: The present disclosure relates to a fiber encapsulation mechanism for energy dissipation in a fiber amplifying system. One example embodiment includes an optical fiber amplifier. The optical fiber amplifier includes an optical fiber that includes a gain medium, as well as a polymer layer that at least partially surrounds the optical fiber. The polymer layer is optically transparent. In addition, the optical fiber amplifier includes a pump source. Optical pumping by the pump source amplifies optical signals in the optical fiber and generates excess heat and excess photons. The optical fiber amplifier additionally includes a heatsink layer disposed adjacent to the polymer layer. The heatsink layer conducts the excess heat away from the optical fiber. Further, the optical fiber amplifier includes an optically transparent layer disposed adjacent to the polymer layer. The optically transparent layer transmits the excess photons away from the optical fiber.
    Type: Grant
    Filed: August 31, 2017
    Date of Patent: June 23, 2020
    Assignee: Waymo LLC
    Inventors: Bernard Fidric, Daniel Rosenfeld, Rahim Pardhan
  • Publication number: 20200081349
    Abstract: Systems and methods described herein relate to the manufacture of optical elements and optical systems. An example method includes overlaying a first mask on a photoresist material and a substrate, and causing a light source to illuminate the photoresist material through the first mask during a first exposure so as to define a first feature. During the first exposure, the light source is positioned at a non-normal angle with respect to a plane parallel to the substrate. The method includes developing the photoresist material so as to retain an elongate portion of the photoresist material on the substrate. A first end of the elongate portion includes an angled portion that is sloped at an angle with respect to a long axis of the elongate portion. The method also includes depositing a reflective material through a second mask onto the angled portion.
    Type: Application
    Filed: November 15, 2019
    Publication date: March 12, 2020
    Inventors: Bernard Fidric, Pierre-yves Droz, David Hutchison
  • Patent number: 10503071
    Abstract: Systems and methods described herein relate to the manufacture of optical elements and optical systems. An example method includes overlaying a first mask on a photoresist material and a substrate, and causing a light source to illuminate the photoresist material through the first mask during a first exposure so as to define a first feature. During the first exposure, the light source is positioned at a non-normal angle with respect to a plane parallel to the substrate. The method includes developing the photoresist material so as to retain an elongate portion of the photoresist material on the substrate. A first end of the elongate portion includes an angled portion that is sloped at an angle with respect to a long axis of the elongate portion. The method also includes depositing a reflective material through a second mask onto the angled portion.
    Type: Grant
    Filed: October 26, 2017
    Date of Patent: December 10, 2019
    Assignee: Waymo LLC
    Inventors: Bernard Fidric, Pierre-yves Droz, David Hutchison
  • Publication number: 20190317503
    Abstract: Described herein is a LIDAR device that may include a transmitter, first and second receivers, and a rotating platform. The transmitter may be configured to emit light having a vertical beam width. The first receiver may be configured to detect light at a first resolution while scanning the environment with a first FOV and the second receiver may be configured to detect light at a second resolution while scanning the environment with a second FOV. In this arrangement, the first resolution may be higher than the second resolution, the first FOV may be at least partially different from the second FOV, and the vertical beam width may encompass at least a vertical extent of the first and second FOVs. Further, the rotating platform may be configured to rotate about an axis such that the transmitter and first and second receivers each move based on the rotation.
    Type: Application
    Filed: June 26, 2019
    Publication date: October 17, 2019
    Inventors: Pierre-Yves Droz, Caner Onal, William McCann, Bernard Fidric, Vadim Gutnik, Laila Mattos, Rahim Pardhan
  • Patent number: RE48961
    Abstract: A vehicle is provided that includes one or more wheels positioned at a bottom side of the vehicle. The vehicle also includes a first light detection and ranging device (LIDAR) positioned at a top side of the vehicle opposite to the bottom side. The first LIDAR is configured to scan an environment around the vehicle based on rotation of the first LIDAR about an axis. The first LIDAR has a first resolution. The vehicle also includes a second LIDAR configured to scan a field-of-view of the environment that extends away from the vehicle along a viewing direction of the second LIDAR. The second LIDAR has a second resolution. The vehicle also includes a controller configured to operate the vehicle based on the scans of the environment by the first LIDAR and the second LIDAR.
    Type: Grant
    Filed: October 31, 2017
    Date of Patent: March 8, 2022
    Assignee: Waymo LLC
    Inventors: Daniel Gruver, Pierre-Yves Droz, Gaetan Pennecot, Anthony Levandowski, Drew Eugene Ulrich, Zachary Morriss, Luke Wachter, Dorel Ionut Iordache, Rahim Pardhan, William McCann, Bernard Fidric, Samuel William Lenius, Peter Avram