Patents by Inventor Bernard Harrison

Bernard Harrison has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9139367
    Abstract: A conveyor belt idler assembly comprises support structure, a strand of catenary idler rollers, and an outboard wing roller or slider bar. The strand of catenary idler rollers can take on various trough-shaped contours. The outboard wing roller or slider bar is attached to the support structure and is able to translate relative to the support structure only along a linear path. The translational movement of the outboard wing roller or slider bar along the linear path is at least partial dependent upon changes in the contour of the strand of catenary idler rollers. The structure is adjustable such that the strand of catenary idler rollers can be lowered and raised to facilitate servicing and installation. A plurality of idler assemblies can be connected to each other using connecting brackets that rigidly tie the assemblies to each other near the outermost idler rollers or slider bars.
    Type: Grant
    Filed: September 24, 2012
    Date of Patent: September 22, 2015
    Assignee: Martin Engineering Company
    Inventors: Robert Todd Swinderman, Paul Bernard Harrison, Richard P. Stahura
  • Publication number: 20140083822
    Abstract: A conveyor belt idler assembly comprises support structure, a strand of catenary idler rollers, and an outboard wing roller or slider bar. The strand of catenary idler rollers can take on various trough-shaped contours. The outboard wing roller or slider bar is attached to the support structure and is able to translate relative to the support structure only along a linear path. The translational movement of the outboard wing roller or slider bar along the linear path is at least partial dependent upon changes in the contour of the strand of catenary idler rollers. The structure is adjustable such that the strand of catenary idler rollers can be lowered and raised to facilitate servicing and installation. A plurality of idler assemblies can be connected to each other using connecting brackets that rigidly tie the assemblies to each other near the outermost idler rollers or slider bars.
    Type: Application
    Filed: September 24, 2012
    Publication date: March 27, 2014
    Applicant: MARTIN ENGINEERING COMPANY
    Inventors: Robert Todd Swinderman, Paul Bernard Harrison, Richard P. Stahura
  • Patent number: 8321717
    Abstract: A system and method for dynamic frequency adjustment for interoperability of differential clock recovery, including one or more of the following: a frequency generator for receiving a frequency reference clock signal and generating a plurality of frequency signals by operating on the frequency reference clock signal, the plurality of frequencies signals being output from the frequency generator and each having a different frequency; a flexible distributor for receiving the plurality of frequency signals from the frequency generator and selecting ones of said plurality of frequency signals and transmitting said selected ones of said plurality of frequency signals; and a plurality of differential units, each for receiving one of said selected ones of said plurality of frequency signals, each for applying a differential signal to said selected ones of said plurality of frequency signals, and each for adding time stamps to the selected ones of said plurality of frequency signals and outputting respective time sta
    Type: Grant
    Filed: April 12, 2011
    Date of Patent: November 27, 2012
    Assignee: Alcatel Lucent
    Inventors: Steven Anthony Bernard Harrison, James Michael Schriel
  • Publication number: 20110191621
    Abstract: A system and method for dynamic frequency adjustment for interoperability of differential clock recovery, including one or more of the following: a frequency generator for receiving a frequency reference clock signal and generating a plurality of frequency signals by operating on the frequency reference clock signal, the plurality of frequencies signals being output from the frequency generator and each having a different frequency; a flexible distributor for receiving the plurality of frequency signals from the frequency generator and selecting ones of said plurality of frequency signals and transmitting said selected ones of said plurality of frequency signals; and a plurality of differential units, each for receiving one of said selected ones of said plurality of frequency signals, each for applying a differential signal to said selected ones of said plurality of frequency signals, and each for adding time stamps to the selected ones of said plurality of frequency signals and outputting respective time sta
    Type: Application
    Filed: April 12, 2011
    Publication date: August 4, 2011
    Applicant: ALCATEL LUCENT
    Inventors: Steven Anthony Bernard Harrison, James Michael Schriel
  • Patent number: 7966510
    Abstract: A system and method for dynamic frequency adjustment for interoperability of differential clock recovery, comprising: a frequency generator for receiving a frequency reference clock signal and generating a plurality of frequency signals, the plurality of frequency signals being output from the frequency generator and each having a different frequency; a flexible distributor for receiving the plurality of frequency signals from the frequency generator, and transmitting selected frequency signals; and a plurality of differential units, each for receiving the selected frequency signals, applying a differential signal to the selected frequency signals, adding time stamps to the selected frequency signals, and outputting respective time stamped differential selected frequency signals.
    Type: Grant
    Filed: November 30, 2007
    Date of Patent: June 21, 2011
    Assignee: Alcatel Lucent
    Inventors: Steven Anthony Bernard Harrison, James Michael Schriel
  • Patent number: 7929574
    Abstract: A clock distribution mechanism for circuit emulation applications, and related method, including one or more of the following: a plurality of digitally controlled oscillators, each of the plurality of digitally controlled oscillators receiving one or more Ethernet packets and generating a recovered clock from the one or more Ethernet packets; a multiplexer for receiving the recovered clocks generated by the plurality of digitally controlled oscillators, selecting a one of the recovered clocks generated by the plurality of digitally controlled oscillators, and outputting the selected one of the recovered clocks; a normalizer that receives a frequency of the selected one of the recovered clocks and generates a normalized frequency output based on the received frequency of the selected one of the recovered clocks and outputs the normalized frequency output; a clock source selector for receiving a plurality of input clock sources, one of the input clock sources being the normalized frequency output of the normali
    Type: Grant
    Filed: November 30, 2007
    Date of Patent: April 19, 2011
    Assignee: Alcatel Lucent
    Inventors: Steven Anthony Bernard Harrison, James Michael Schriel
  • Publication number: 20090141743
    Abstract: A clock distribution mechanism for circuit emulation applications, and related method, including one or more of the following: a plurality of digitally controlled oscillators, each of the plurality of digitally controlled oscillators receiving one or more Ethernet packets and generating a recovered clock from the one or more Ethernet packets; a multiplexer for receiving the recovered clocks generated by the plurality of digitally controlled oscillators, selecting a one of the recovered clocks generated by the plurality of digitally controlled oscillators, and outputting the selected one of the recovered clocks; a normalizer that receives a frequency of the selected one of the recovered clocks and generates a normalized frequency output based on the received frequency of the selected one of the recovered clocks and outputs the normalized frequency output; a clock source selector for receiving a plurality of input clock sources, one of the input clock sources being the normalized frequency output of the normali
    Type: Application
    Filed: November 30, 2007
    Publication date: June 4, 2009
    Applicant: ALCATEL LUCENT
    Inventors: Steven Anthony Bernard Harrison, James Michael Schriel
  • Publication number: 20090142062
    Abstract: A system and method for dynamic frequency adjustment for interoperability of differential clock recovery, including one or more of the following: a frequency generator for receiving a frequency reference clock signal and generating a plurality of frequency signals by operating on the frequency reference clock signal, the plurality of frequencies signals being output from the frequency generator and each having a different frequency; a flexible distributor for receiving the plurality of frequency signals from the frequency generator and selecting ones of said plurality of frequency signals and transmitting said selected ones of said plurality of frequency signals; and a plurality of differential units, each for receiving one of said selected ones of said plurality of frequency signals, each for applying a differential signal to said selected ones of said plurality of frequency signals, and each for adding time stamps to the selected ones of said plurality of frequency signals and outputting respective time sta
    Type: Application
    Filed: November 30, 2007
    Publication date: June 4, 2009
    Applicant: ALCATEL LUCENT
    Inventors: Steven Anthony Bernard Harrison, James Michael Schriel
  • Publication number: 20070259511
    Abstract: An implanter provides two-dimensional scanning of a substrate relative to an implant beam so that the beam draws a raster of scan lines on the substrate. The beam current is measured at turnaround points off the substrate and the current value is used to control the subsequent fast scan speed so as to compensate for the effect of any variation in beam current on dose uniformity in the slow scan direction. The scanning may produce a raster of non-intersecting uniformly spaced parallel scan lines and the spacing between the lines is selected to ensure appropriate dose uniformity.
    Type: Application
    Filed: May 4, 2006
    Publication date: November 8, 2007
    Inventors: Adrian Murrell, Bernard Harrison, Peter Edwards, Peter Kindersley, Craig Lowrie, Peter Banks, Takao Sakase, Marvin Farley, Shu Satoh, Geoffrey Ryding
  • Patent number: 7282427
    Abstract: An implanter provides two-dimensional scanning of a substrate relative to an implant beam so that the beam draws a raster of scan lines on the substrate. The beam current is measured at turnaround points off the substrate and the current value is used to control the subsequent fast scan speed so as to compensate for the effect of any variation in beam current on dose uniformity in the slow scan direction. The scanning may produce a raster of non-intersecting uniformly spaced parallel scan lines and the spacing between the lines is selected to ensure appropriate dose uniformity.
    Type: Grant
    Filed: May 4, 2006
    Date of Patent: October 16, 2007
    Assignee: Applied Materials, Inc.
    Inventors: Adrian Murrell, Bernard Harrison, Peter Ivor Tudor Edwards, Peter Kindersley, Craig Lowrie, Peter Michael Banks, Takao Sakase, Marvin Farley, Shu Satoh, Geoffrey Ryding
  • Patent number: 7253424
    Abstract: An implanter provides two-dimensional scanning of a substrate relative to an implant beam so that the beam draws a raster of scan lines on the substrate. The beam current is measured at turnaround points off the substrate and the current value is used to control the subsequent fast scan speed so as to compensate for the effect of any variation in beam current on dose uniformity in the slow scan direction. The scanning may produce a raster of non-intersecting uniformly spaced parallel scan lines and the spacing between the lines is selected to ensure appropriate dose uniformity.
    Type: Grant
    Filed: May 4, 2006
    Date of Patent: August 7, 2007
    Assignee: Applied Materials, Inc.
    Inventors: Adrian Murrell, Bernard Harrison, Peter Ivor Tudor Edwards, Peter Kindersley, Craig Lowrie, Peter Michael Banks, Takao Sakase, Marvin Farley, Shu Satoh, Geoffrey Ryding
  • Patent number: 7235797
    Abstract: An implanter provides two-dimensional scanning of a substrate relative to an implant beam so that the beam draws a raster of scan lines on the substrate. The beam current is measured at turnaround points off the substrate and the current value is used to control the subsequent fast scan speed so as to compensate for the effect of any variation in beam current on dose uniformity in the slow scan direction. The scanning may produce a raster of non-intersecting uniformly spaced parallel scan lines and the spacing between the lines is selected to ensure appropriate dose uniformity.
    Type: Grant
    Filed: May 24, 2005
    Date of Patent: June 26, 2007
    Assignee: Applied Materials, Inc.
    Inventors: Adrian Murrell, Bernard Harrison, Peter Edwards, Peter Kindersley, Takao Sakase, Marvin Farley, Shu Satoh, Geoffrey Ryding
  • Publication number: 20060197016
    Abstract: An implanter provides two-dimensional scanning of a substrate relative to an implant beam so that the beam draws a raster of scan lines on the substrate. The beam current is measured at turnaround points off the substrate and the current value is used to control the subsequent fast scan speed so as to compensate for the effect of any variation in beam current on dose uniformity in the slow scan direction. The scanning may produce a raster of non-intersecting uniformly spaced parallel scan lines and the spacing between the lines is selected to ensure appropriate dose uniformity.
    Type: Application
    Filed: May 4, 2006
    Publication date: September 7, 2006
    Inventors: Adrian Murrell, Bernard Harrison, Peter Edwards, Peter Kindersley, Craig Lowrie, Peter Banks, Takao Sakase, Marvin Farley, Shu Satoh, Geoffrey Ryding
  • Patent number: 7049210
    Abstract: An implanter provides two-dimensional scanning of a substrate relative to an implant beam so that the beam draws a raster of scan lines on the substrate. The beam current is measured at turnaround points off the substrate and the current value is used to control the subsequent fast scan speed so as to compensate for the effect of any variation in beam current on dose uniformity in the slow scan direction. The scanning may produce a raster of non-intersecting uniformly spaced parallel scan lines and the spacing between the lines is selected to ensure appropriate dose uniformity.
    Type: Grant
    Filed: January 12, 2004
    Date of Patent: May 23, 2006
    Assignee: Applied Materials, Inc.
    Inventors: Adrian Murrell, Bernard Harrison, Peter Ivor Tudor Edwards, Peter Kindersley, Craig Lowrie, Peter Michael Banks, Takao Sakase, Marvin Farley, Shu Satoh, Geoffrey Ryding
  • Publication number: 20050269527
    Abstract: An implanter provides two-dimensional scanning of a substrate relative to an implant beam so that the beam draws a raster of scan lines on the substrate. The beam current is measured at turnaround points off the substrate and the current value is used to control the subsequent fast scan speed so as to compensate for the effect of any variation in beam current on dose uniformity in the slow scan direction. The scanning may produce a raster of non-intersecting uniformly spaced parallel scan lines and the spacing between the lines is selected to ensure appropriate dose uniformity.
    Type: Application
    Filed: May 24, 2005
    Publication date: December 8, 2005
    Inventors: Adrian Murrell, Bernard Harrison, Peter Edwards, Peter Kindersley, Takao Sakase, Marvin Farley, Shu Satoh, Geoffrey Ryding
  • Patent number: 6956223
    Abstract: Semiconductor processing apparatus is disclosed which provides for movement of a scanning arm 60 of a substrate or wafer holder 180, in at least two generally orthogonal directions (so-called X-Y scanning). Scanning in a first direction is longitudinally through an aperture 55 in a vacuum chamber wall. The arm 60 is reciprocated by one or more linear motors 90A, 90B. The arm 60 is supported relative to a slide 100 using gimballed air bearings so as to provide cantilever support for the arm relative to the slide 100. A compliant feedthrough 130 into the vacuum chamber for the arm 60 then acts as a vacuum seal and guide but does not itself need to provide bearing support. A Faraday 450 is attached to the arm 60 adjacent the substrate holder 180 to allow beam profiling to be carried out both prior to and during implant.
    Type: Grant
    Filed: April 10, 2002
    Date of Patent: October 18, 2005
    Assignee: Applied Materials, Inc.
    Inventors: Theodore H. Smick, Frank D. Roberts, Marvin Farley, Geoffrey Ryding, Takao Sakase, Adrian Murrell, Peter Edwards, Bernard Harrison
  • Publication number: 20050191409
    Abstract: This invention relates to an ion beam monitoring arrangement for use in an ion implanter where it is desirable to monitor the flux and/or a cross-sectional profile of the ion beam used for implantation. It is often desirable to measure the flux and/or cross-sectional profile of an ion beam in an ion implanter in order to improve control of ion implantation of a semiconductor wafer or similar. The present invention describes adapting the wafer holder to allow such beam profiling to be performed. The substrate holder may be used progressively to occlude the ion beam from a downstream flux monitor or a flux monitor may be located on the wafer holder that is provided with a slit entrance aperture.
    Type: Application
    Filed: January 5, 2005
    Publication date: September 1, 2005
    Inventors: Adrian Murrell, Bernard Harrison, Peter Edwards, Peter Kindersley, Robert Mitchell, Theodore Smick, Geoffrey Ryding, Marvin Farley, Takao Sakase
  • Publication number: 20050181584
    Abstract: This invention relates to a method of implanting ions in a substrate using an ion beam where instabilities in the ion beam may be present and to an ion implanter for use with such a method. This invention also relates to an ion source for generating an ion beam that can be switched off rapidly. In essence, the invention provides a method of implanting ions comprising switching off the ion beam when an instability has been detected whilst continuing motion of the substrate relative to the ion beam to leave an unimplanted portion of a scan line across the substrate, establishing a stable ion beam once more and finishing the scan line by implanting the unimplanted portion of the path.
    Type: Application
    Filed: January 6, 2005
    Publication date: August 18, 2005
    Inventors: Majeed Foad, Bernard Harrison, Marvin Farley, Peter Kindersley, Stephen Wells, Geoffrey Ryding, Takao Sakase
  • Patent number: 6908836
    Abstract: An implanter provides two-dimensional scanning of a substrate relative to an implant beam so that the beam draws a raster of scan lines on the substrate. The beam current is measured at turnaround points off the substrate and the current value is used to control the subsequent fast scan speed so as to compensate for the effect of any variation in beam current on dose uniformity in the slow scan direction. The scanning may produce a raster of non-intersecting uniformly spaced parallel scan lines and the spacing between the lines is selected to ensure appropriate dose uniformity.
    Type: Grant
    Filed: September 23, 2002
    Date of Patent: June 21, 2005
    Assignee: Applied Materials, Inc.
    Inventors: Adrian Murrell, Bernard Harrison, Peter Edwards, Peter Kindersley, Takao Sakase, Marvin Farley, Shu Satoh, Geoffrey Ryding
  • Publication number: 20040058513
    Abstract: An implanter provides two-dimensional scanning of a substrate relative to an implant beam so that the beam draws a raster of scan lines on the substrate. The beam current is measured at turnaround points off the substrate and the current value is used to control the subsequent fast scan speed so as to compensate for the effect of any variation in beam current on dose uniformity in the slow scan direction. The scanning may produce a raster of non-intersecting uniformly spaced parallel scan lines and the spacing between the lines is selected to ensure appropriate dose uniformity.
    Type: Application
    Filed: September 23, 2002
    Publication date: March 25, 2004
    Inventors: Adrian Murrell, Bernard Harrison, Peter Edwards, Peter Kindersley, Takao Sakase, Marvin Farley, Shu Satoh, Geoffrey Ryding