Patents by Inventor Bernard J. Michini

Bernard J. Michini has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210341527
    Abstract: Methods, systems and apparatus, for an unmanned aerial vehicle electromagnetic avoidance and utilization system. One of the methods includes obtaining a flight package indicating a flight pattern associated with inspecting a structure, the flight pattern causing the UAV to remain at a standoff distance from the structure, wherein the standoff distance is based on an electromagnetic field associated with the structure, and wherein the flight pattern is laterally constrained according to a property geofence associated with a right of way of the structure. The UAV is navigated according to the flight pattern, and the UAV captures images of the structure. For an initial portion of the flight pattern, the UAV navigates at an altitude based on the standoff distance and the property geofence towards the structure. The UAV determines a location at which to capture images of the structure, and the UAV provides the captured images to a user device.
    Type: Application
    Filed: May 7, 2021
    Publication date: November 4, 2021
    Inventors: Fabien Blanc-Paques, Bernard J. Michini, Mark Patrick Bauer
  • Patent number: 11156573
    Abstract: Methods, systems, and program products of inspecting solar panels using unmanned aerial vehicles (UAVs) are disclosed. A UAV can obtain a position of the Sun in a reference frame, a location of a solar panel in the reference frame, and an orientation of the solar panel in the reference frame. The UAV can determine a viewing position of the UAV in the reference frame based on at least one of the position of the Sun, the location of the solar panel, and the orientation of the solar panel. The UAV can maneuver to the viewing position and point a thermal sensor onboard the UAV at the solar panel. The UAV can capture, by the thermal sensor, a thermal image of at least a portion of the solar panel. A server onboard the UAV or connected to the UAV can detect panel failures based on the thermal image.
    Type: Grant
    Filed: June 30, 2017
    Date of Patent: October 26, 2021
    Assignee: Skydio, Inc.
    Inventors: Bernard J. Michini, Fabien Blanc-Paques, Edward Dale Steakley
  • Publication number: 20210323348
    Abstract: Systems, methods and apparatus for automated vehicle wheel removal and replacement are provided. One system includes a computer system with applications for scheduling the replacement of tires for the vehicle. An electronically controlled lift device and robotic apparatus is configured for interaction with the computer system. The lift device mechanically adjusts arms for placement on lift points of vehicles. The robotic apparatus detects positioning of lug nut configuration for a wheel, removes lug nuts, and then removes the wheel from the wheel hub with gripping arms. The wheel and tire are then handed off to a separate tire changing machine. When a new tire is replaced the robotic apparatus then mounts the wheel to the original wheel hub, and then secures the lug nuts to the lug nut bolts.
    Type: Application
    Filed: June 25, 2021
    Publication date: October 21, 2021
    Inventors: Jonathan Downey, Victor Darolfi, Robert Baranowski, Mark Bauer, Bernard J. Michini
  • Patent number: 11150089
    Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for an unmanned aerial vehicle control point selection system. A first unmanned aerial vehicle can navigate about a geographic area while a second unmanned aerial vehicle can capture images of the first unmanned aerial vehicle. Location information of the first unmanned aerial vehicle can be recorded, and a system can identify the first unmanned aerial vehicle in the captured images. Utilizing the recorded location information, the system can identify landmarks proximate to the first unmanned aerial vehicle identified in the images, and determine location information of the landmarks. The landmarks can be assigned as ground control points for subsequent flight plans.
    Type: Grant
    Filed: December 30, 2016
    Date of Patent: October 19, 2021
    Assignee: Skydio, Inc.
    Inventors: Bernard J. Michini, Brett Michael Bethke, Hui Li
  • Patent number: 11149717
    Abstract: Methods, systems and apparatus, including computer programs encoded on computer storage media for an unmanned aerial vehicle (UAV) wind turbine inspection system. One of the methods includes obtaining first sensor information by an unmanned aerial vehicle (UAV), the first sensor information describing physical aspects of a wind turbine, including one or more blades of the wind turbine. An orientation of the blades of the wind turbine are determined based on the obtained first sensor information. A flight pattern for the UAV to inspect the blades of the wind turbine is determined, the flight pattern being based on the determined orientation of the blades. Each of the blades of the wind turbine is inspected by the UAV according to the determined flight pattern, the inspection including obtaining second sensor information describing the blades of the wind turbine.
    Type: Grant
    Filed: June 29, 2017
    Date of Patent: October 19, 2021
    Assignee: Skydio, Inc.
    Inventors: Bernard J. Michini, Fabien Blanc-Paques
  • Patent number: 11150654
    Abstract: In some implementations, a UAV flight system can dynamically adjust UAV flight operations based on radio frequency (RF) signal data. For example, the flight system can determine an initial flight plan for inspecting a RF transmitter and configure a UAV to perform an aerial inspection of the RF transmitter. Once airborne, the UAV can collect RF signal data and the flight system can automatically adjust the flight plan to avoid RF signal interference and/or damage to the UAV based on the collected RF signal data. In some implementations, the UAV can collect RF signal data and generate a three-dimensional received signal strength map that describes the received signal strength at various locations within a volumetric area around the RF transmitter. In some implementations, the UAV can collect RF signal data and determine whether a RF signal transmitter is properly aligned.
    Type: Grant
    Filed: June 29, 2017
    Date of Patent: October 19, 2021
    Assignee: Skydio, Inc.
    Inventors: Bernard J. Michini, Fabien Blanc-Pâques, Logan Cummings
  • Patent number: 11138889
    Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for reserving airspace for UAV operations. In some implementations, a flight planning system can reserve and allocate airspace for unmanned aerial vehicle (UAV) operations. For example, a UAV operator device can submit a flight plan to the flight planning system. The flight planning system can submit a flight authorization request to an airspace management system to reserve airspace necessary for the flight plan. The flight planning system can receive approval and/or a reservation of the airspace for the flight plan from the airspace management system, generate a flight data package, and send the flight data package to the operator's device.
    Type: Grant
    Filed: March 22, 2017
    Date of Patent: October 5, 2021
    Assignee: Skydio, Inc.
    Inventors: Eric David Johnson, Jesse Daniel Kallman, Bernard J. Michini
  • Publication number: 20210240206
    Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for an unmanned aerial vehicle control point selection system. A first unmanned aerial vehicle can navigate about a geographic area while a second unmanned aerial vehicle can capture images of the first unmanned aerial vehicle. Location information of the first unmanned aerial vehicle can be recorded, and a system can identify the first unmanned aerial vehicle in the captured images. Utilizing the recorded location information, the system can identify landmarks proximate to the first unmanned aerial vehicle identified in the images, and determine location information of the landmarks. The landmarks can be assigned as ground control points for subsequent flight plans.
    Type: Application
    Filed: December 30, 2016
    Publication date: August 5, 2021
    Inventors: Bernard J. Michini, Brett Michael Bethke, Hui Li
  • Patent number: 11059325
    Abstract: Systems, methods and apparatus for automated vehicle wheel removal and replacement are provided. One system includes a computer system with applications for scheduling the replacement of tires for the vehicle. An electronically controlled lift device and robotic apparatus is configured for interaction with the computer system. The lift device mechanically adjusts arms for placement on lift points of vehicles. The robotic apparatus detects positioning of lug nut configuration for a wheel, removes lug nuts, and then removes the wheel from the wheel hub with gripping arms. The wheel and tire are then handed off to a separate tire changing machine. When a new tire is replaced the robotic apparatus then mounts the wheel to the original wheel hub, and then secures the lug nuts to the lug nut bolts.
    Type: Grant
    Filed: August 20, 2020
    Date of Patent: July 13, 2021
    Assignee: RoboTire, Inc.
    Inventors: Jonathan Downey, Victor Darolfi, Robert Baranowski, Mark Bauer, Bernard J. Michini
  • Publication number: 20210188000
    Abstract: Systems, methods and apparatus for automated vehicle wheel removal and replacement are provided. One system includes a computer system with applications for scheduling the replacement of tires for the vehicle. An electronically controlled lift device and robotic apparatus is configured for interaction with the computer system. The lift device mechanically adjusts arms for placement on lift points of vehicles. The robotic apparatus detects positioning of lug nut configuration for a wheel, removes lug nuts, and then removes the wheel from the wheel hub with gripping arms. The wheel and tire are then handed off to a separate tire changing machine. When a new tire is replaced the robotic apparatus then mounts the wheel to the original wheel hub, and then secures the lug nuts to the lug nut bolts.
    Type: Application
    Filed: March 3, 2021
    Publication date: June 24, 2021
    Inventors: Jonathan Downey, Victor Darolfi, Robert Baranowski, Mark Bauer, Bernard J. Michini
  • Patent number: 11029352
    Abstract: Methods, systems and apparatus, for an unmanned aerial vehicle electromagnetic avoidance and utilization system. One of the methods includes obtaining a flight package indicating a flight pattern associated with inspecting a structure, the flight pattern causing the UAV to remain at a standoff distance from the structure, wherein the standoff distance is based on an electromagnetic field associated with the structure, and wherein the flight pattern is laterally constrained according to a property geofence associated with a right of way of the structure. The UAV is navigated according to the flight pattern, and the UAV captures images of the structure. For an initial portion of the flight pattern, the UAV navigates at an altitude based on the standoff distance and the property geofence towards the structure. The UAV determines a location at which to capture images of the structure, and the UAV provides the captured images to a user device.
    Type: Grant
    Filed: May 17, 2017
    Date of Patent: June 8, 2021
    Assignee: Skydio, Inc.
    Inventors: Fabien Blanc-Paques, Bernard J. Michini, Mark Patrick Bauer
  • Patent number: 11017679
    Abstract: Methods, systems and apparatus, including computer programs encoded on computer storage media for unmanned aerial vehicle flight operations near physical structures or objects. In particular, a point cloud of the physical structure is generated using aerial images of the structure. The point cloud is then referenced to determine a flight path for the UAV to follow around the physical structure, determine whether a planned flight path to desired locations around the structure is possible, determine the fastest route to return home and land from a given position around the physical structure, determine possibility of inflight collision to surface represented in point cloud, or determine an orientation of a fixed or gimbaled camera given a position of the UAV relative the point cloud.
    Type: Grant
    Filed: January 12, 2018
    Date of Patent: May 25, 2021
    Assignee: Skydio, Inc.
    Inventors: Joseph Moster, Donna Okazaki, Bernard J. Michini
  • Patent number: 10974546
    Abstract: Systems, methods and apparatus for automated vehicle wheel removal and replacement are provided. One system includes a computer system with applications for scheduling the replacement of tires for the vehicle. An electronically controlled lift device and robotic apparatus is configured for interaction with the computer system. The lift device mechanically adjusts arms for placement on lift points of vehicles. The robotic apparatus detects positioning of lug nut configuration for a wheel, removes lug nuts, and then removes the wheel from the wheel hub with gripping arms. The wheel and tire are then handed off to a separate tire changing machine. When a new tire is replaced the robotic apparatus then mounts the wheel to the original wheel hub, and then secures the lug nuts to the lug nut bolts.
    Type: Grant
    Filed: April 17, 2019
    Date of Patent: April 13, 2021
    Assignee: RoboTire, Inc.
    Inventors: Jonathan Downey, Victor Darolfi, Robert Baranowski, Mark Bauer, Bernard J. Michini
  • Publication number: 20210089029
    Abstract: A modular vehicle management system is described, comprising a controller module configured to control different types of carrier modules. The controller module includes a computer system and optionally one or more sensors. The computer system is configured to perform operations comprising detecting whether a carrier module is connected to the controller module. If the carrier module is connected to the controller module, the carrier module is authenticated. If the authentication fails, operation of the vehicle is inhibited. The control module is configured to determine carrier module capabilities including information regarding a navigation processing device, and/or a radio modem. The controller adapts to the capabilities of the controller module. Using information from the sensors and the navigation processing device, the vehicle management system navigates the vehicle.
    Type: Application
    Filed: July 16, 2018
    Publication date: March 25, 2021
    Inventors: Jonathan Downey, Bernard J. Michini
  • Publication number: 20210065563
    Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for an unmanned aerial system inspection system. One of the methods is performed by a UAV and includes receiving, by the UAV, flight information describing a job to perform an inspection of a rooftop. A particular altitude is ascended to, and an inspection of the rooftop is performed including obtaining sensor information describing the rooftop. Location information identifying a damaged area of the rooftop is received. The damaged area of the rooftop is traveled to. An inspection of the damaged area of the rooftop is performed including obtaining detailed sensor information describing the damaged area. A safe landing location is traveled to.
    Type: Application
    Filed: September 14, 2018
    Publication date: March 4, 2021
    Inventors: Mark Patrick Bauer, Brian Richman, Alan Jay Poole, Bernard J. Michini, Jonathan Anders Lovegren, Brett Michael Bethke, Hui Li
  • Publication number: 20210055721
    Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for an unmanned aerial system inspection system. One of the methods is performed by a UAV and includes obtaining, from a user device, flight operation information describing an inspection of a vertical structure to be performed, the flight operation information including locations of one or more safe locations for vertical inspection. A location of the UAV is determined to correspond to a first safe location for vertical inspection. A first inspection of the structure is performed is performed at the first safe location, the first inspection including activating cameras. A second safe location is traveled to, and a second inspection of the structure is performed. Information associated with the inspection is provided to the user device.
    Type: Application
    Filed: August 31, 2020
    Publication date: February 25, 2021
    Inventors: Brett Michael Bethke, Hui Li, Bernard J. Michini
  • Publication number: 20210058331
    Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for a distributed system architecture for unmanned air vehicles. One of the methods includes obtaining information identifying flight information of a UAV, with the flight information including flight phase information or a contingency condition associated with a flight critical module included in the UAV. The obtained information is analyzed, and one or more first payload modules are determined to enter a modified power state. Requests to enter the modified power state are caused to be transmitted to each determined payload module in the one or more first payload modules.
    Type: Application
    Filed: August 31, 2020
    Publication date: February 25, 2021
    Inventors: Jonathan Downey, Bernard J. Michini, Brian Richman
  • Publication number: 20210049916
    Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for unmanned aerial vehicle authorization and geofence envelope determination. One of the methods includes determining, by an electronic system in an Unmanned Aerial Vehicle (UAV), an estimated fuel remaining in the UAV. An estimated fuel consumption of the UAV is determined. Estimated information associated with wind affecting the UAV is determined using information obtained from sensors included in the UAV. Estimated flights times remaining for a current path, and one or more alternative flight paths, are determined using the determined estimated fuel remaining, determined estimated fuel consumption, determined information associated wind, and information describing each flight path. In response to the electronic system determining that the estimated fuel remaining, after completion of the current flight path, would be below a first threshold, an alternative flight path is selected.
    Type: Application
    Filed: August 24, 2020
    Publication date: February 18, 2021
    Inventors: Jonathan Downey, Bernard J. Michini, Joseph Moster, Donald Curry Weigel, James Ogden
  • Publication number: 20200376888
    Abstract: Systems, methods and apparatus for automated vehicle wheel removal and replacement are provided. One system includes a computer system with applications for scheduling the replacement of tires for the vehicle. An electronically controlled lift device and robotic apparatus is configured for interaction with the computer system. The lift device mechanically adjusts arms for placement on lift points of vehicles. The robotic apparatus detects positioning of lug nut configuration for a wheel, removes lug nuts, and then removes the wheel from the wheel hub with gripping arms. The wheel and tire are then handed off to a separate tire changing machine. When a new tire is replaced the robotic apparatus then mounts the wheel to the original wheel hub, and then secures the lug nuts to the lug nut bolts.
    Type: Application
    Filed: August 20, 2020
    Publication date: December 3, 2020
    Inventors: Jonathan Downey, Victor Darolfi, Robert Baranowski, Mark Bauer, Bernard J. Michini
  • Patent number: 10773550
    Abstract: Systems, methods and apparatus for automated vehicle wheel removal and replacement are provided. One system includes a computer system with applications for scheduling the replacement of tires for the vehicle. An electronically controlled lift device and robotic apparatus is configured for interaction with the computer system. The lift device mechanically adjusts arms for placement on lift points of vehicles. The robotic apparatus detects positioning of lug nut configuration for a wheel, removes lug nuts, and then removes the wheel from the wheel hub with gripping arms. The wheel and tire are then handed off to a separate tire changing machine. When a new tire is replaced the robotic apparatus then mounts the wheel to the original wheel hub, and then secures the lug nuts to the lug nut bolts.
    Type: Grant
    Filed: May 12, 2020
    Date of Patent: September 15, 2020
    Assignee: RoboTire, Inc.
    Inventors: Jonathan Downey, Victor Darolfi, Robert Baranowski, Mark Bauer, Bernard J. Michini