Patents by Inventor Bernard Mulvihill

Bernard Mulvihill has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230390062
    Abstract: Embodiments hereof relate to a delivery system for a transcatheter valve prosthesis, the delivery system having an integral centering mechanism to circumferentially center both the delivery system and the valve prosthesis within a vessel at the target implantation site. The centering mechanism may include expandable wings that may be selectively aligned with openings formed through a sidewall of an outer shaft of the delivery system, a coiled wing that may be selectively exposed through an opening formed through a sidewall of an outer shaft of the delivery system, a plurality of elongated filaments extending through a plurality of lumens of an outermost shaft of the delivery system that may be selectively deployed or expanded, an outer shaft that includes at least one pre-formed deflection segment formed thereon, a tool having a deployable lever arm, and/or a plurality of loops deployable via simultaneous longitudinal and rotational movement.
    Type: Application
    Filed: August 18, 2023
    Publication date: December 7, 2023
    Inventors: Sarah AHLBERG, Marc ANDERSON, Donna BARRETT, Evelyn BIRMINGHAM, Constantin CIOBANU, Kieran CUNNINGHAM, Paul DEVEREUX, Niall DUFFY, John GALLAGHER, Patrick GRIFFIN, Frank HAREWOOD, Gerry MCCAFFREY, DEIRDRE MCGOWAN SMYTH, Bernard MULVIHILL, Herinaina Rabarimanantsoa JAMOUS, Joel RACCHINI, Jeffrey SANDSTROM, Frank WHITE
  • Publication number: 20230310148
    Abstract: A transcatheter valve prosthesis including a tubular stent, a prosthetic valve component disposed within and secured to the stent, and a centering mechanism coupled to and encircling an outer surface of the tubular stent. The centering mechanism includes a self-expanding centering ring having an expanded diameter in the expanded configuration that is greater than an expanded diameter of the tubular stent in the expanded configuration and a plurality of self-expanding spokes radially extending between the tubular stent and the centering ring. The centering mechanism may include a base ring and/or a skirt. Alternatively, the centering mechanism includes a plurality of self-expanding loops. When each loop is in a delivery configuration the loop has a straightened profile that proximally extends from a proximal end of the tubular stent. When each loop is in an expanded configuration the loop has a U-shaped profile radially spaced apart from the tubular stent.
    Type: Application
    Filed: June 8, 2023
    Publication date: October 5, 2023
    Inventors: Evelyn BIRMINGHAM, Bernard MULVIHILL, Joel RACCHINI, Jeffrey SANDSTROM
  • Publication number: 20220175528
    Abstract: Embodiments hereof relate to a delivery system for a transcatheter valve prosthesis, the delivery system having an integral centering mechanism to circumferentially center both the delivery system and the valve prosthesis within a vessel at the target implantation site. The centering mechanism may include expandable wings that may be selectively aligned with openings formed through a sidewall of an outer shaft of the delivery system, a coiled wing that may be selectively exposed through an opening formed through a sidewall of an outer shaft of the delivery system, a plurality of elongated filaments extending through a plurality of lumens of an outermost shaft of the delivery system that may be selectively deployed or expanded, an outer shaft that includes at least one pre-formed deflection segment formed thereon, a tool having a deployable lever arm, and/or a plurality of loops deployable via simultaneous longitudinal and rotational movement.
    Type: Application
    Filed: February 18, 2022
    Publication date: June 9, 2022
    Inventors: Sarah AHLBERG, Marc ANDERSON, Donna BARRETT, Evelyn BIRMINGHAM, Constantin CIOBANU, Kieran CUNNINGHAM, Paul DEVEREUX, Niall DUFFY, John GALLAGHER, Patrick GRIFFIN, Frank HAREWOOD, Gerry MCCAFFREY, DEIRDRE MCGOWAN SMYTH, Bernard MULVIHILL, Herinaina Rabarimanantsoa JAMOUS, Joel RACCHINI, Jeffrey SANDSTROM, Frank WHITE
  • Publication number: 20200214833
    Abstract: A transcatheter valve prosthesis including a tubular stent, a prosthetic valve component disposed within and secured to the stent, and a centering mechanism coupled to and encircling an outer surface of the tubular stent. The centering mechanism includes a self-expanding centering ring having an expanded diameter in the expanded configuration that is greater than an expanded diameter of the tubular stent in the expanded configuration and a plurality of self-expanding spokes radially extending between the tubular stent and the centering ring. The centering mechanism may include a base ring and/or a skirt. Alternatively, the centering mechanism includes a plurality of self-expanding loops. When each loop is in a delivery configuration the loop has a straightened profile that proximally extends from a proximal end of the tubular stent. When each loop is in an expanded configuration the loop has a U-shaped profile radially spaced apart from the tubular stent.
    Type: Application
    Filed: March 6, 2020
    Publication date: July 9, 2020
    Inventors: Evelyn BIRMINGHAM, Bernard MULVIHILL, Joel RACCHINI, Jeffrey SANDSTROM
  • Patent number: 10478297
    Abstract: Embodiments hereof relate to a delivery system for a transcatheter valve prosthesis, the delivery system having an integral centering mechanism to circumferentially center both the delivery system and the valve prosthesis within a vessel at the target implantation site. The centering mechanism may include expandable wings that may be selectively aligned with openings formed through a sidewall of an outer shaft of the delivery system, a coiled wing that may be selectively exposed through an opening formed through a sidewall of an outer shaft of the delivery system, a plurality of elongated filaments extending through a plurality of lumens of an outermost shaft of the delivery system that may be selectively deployed or expanded, an outer shaft that includes at least one pre-formed deflection segment formed thereon, a tool having a deployable lever arm, and/or a plurality of loops deployable via simultaneous longitudinal and rotational movement.
    Type: Grant
    Filed: January 19, 2016
    Date of Patent: November 19, 2019
    Assignee: Medtronic Vascular, Inc.
    Inventors: Sarah Ahlberg, Marc Anderson, Donna Barrett, Evelyn Birmingham, Constantin Ciobanu, Kieran Cunningham, Paul Devereux, Niall Duffy, John Gallagher, Patrick Griffin, Frank Harewood, Gerry McCaffrey, Deirdre McGowan Smyth, Bernard Mulvihill, Herinaina Rabarimanantsoa Jamous, Frank White
  • Patent number: 10231827
    Abstract: A transcatheter valve prosthesis including a tubular stent, a prosthetic valve component disposed within and secured to the stent, and a centering mechanism coupled to and encircling an outer surface of the tubular stent. The centering mechanism includes a self-expanding centering ring having an expanded diameter in the expanded configuration that is greater than an expanded diameter of the tubular stent in the expanded configuration and a plurality of self-expanding spokes radially extending between the tubular stent and the centering ring. The centering mechanism may include a base ring and/or a skirt. Alternatively, the centering mechanism includes a plurality of self-expanding loops. When each loop is in a delivery configuration the loop has a straightened profile that proximally extends from a proximal end of the tubular stent. When each loop is in an expanded configuration the loop has a U-shaped profile radially spaced apart from the tubular stent.
    Type: Grant
    Filed: January 19, 2016
    Date of Patent: March 19, 2019
    Assignee: MEDTRONIC VASCULAR, INC.
    Inventor: Bernard Mulvihill
  • Publication number: 20160270910
    Abstract: A transcatheter valve prosthesis including a tubular stent, a prosthetic valve component disposed within and secured to the stent, and a centering mechanism coupled to and encircling an outer surface of the tubular stent. The centering mechanism includes a self-expanding centering ring having an expanded diameter in the expanded configuration that is greater than an expanded diameter of the tubular stent in the expanded configuration and a plurality of self-expanding spokes radially extending between the tubular stent and the centering ring. The centering mechanism may include a base ring and/or a skirt. Alternatively, the centering mechanism includes a plurality of self-expanding loops. When each loop is in a delivery configuration the loop has a straightened profile that proximally extends from a proximal end of the tubular stent. When each loop is in an expanded configuration the loop has a U-shaped profile radially spaced apart from the tubular stent.
    Type: Application
    Filed: January 19, 2016
    Publication date: September 22, 2016
    Inventors: Evelyn Birmingham, Bernard Mulvihill, Joel Racchini, Jeffrey Sandstrom
  • Publication number: 20160213470
    Abstract: Embodiments hereof relate to a delivery system for a transcatheter valve prosthesis, the delivery system having an integral centering mechanism to circumferentially center both the delivery system and the valve prosthesis within a vessel at the target implantation site. The centering mechanism may include expandable wings that may be selectively aligned with openings formed through a sidewall of an outer shaft of the delivery system, a coiled wing that may be selectively exposed through an opening formed through a sidewall of an outer shaft of the delivery system, a plurality of elongated filaments extending through a plurality of lumens of an outermost shaft of the delivery system that may be selectively deployed or expanded, an outer shaft that includes at least one pre-formed deflection segment formed thereon, a tool having a deployable lever arm, and/or a plurality of loops deployable via simultaneous longitudinal and rotational movement.
    Type: Application
    Filed: January 19, 2016
    Publication date: July 28, 2016
    Inventors: Sarah Ahlberg, Marc Anderson, Donna Barrett, Evelyn Birmingham, Constantin Ciobanu, Kieran Cunningham, Paul Devereux, Niall Duffy, John Gallagher, Patrick Griffin, Frank Harewood, Gerry McCaffrey, Deirdre McGowan Smyth, Bernard Mulvihill, Herinaina Rabarimanantsoa Jamous, Joel Racchini, Jeffrey Sandstrom, Frank White