Patents by Inventor Bernard Q. Li

Bernard Q. Li has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10406349
    Abstract: In some examples, the disclosure relates to a medical device comprising a lead including an electrically conductive lead wire; and an electrode electrically coupled to the lead wire, the electrode including a substrate and a coating on an outer surface of the substrate, wherein the lead wire is formed of a composition comprising titanium or titanium alloys, wherein the substrate is formed of a composition comprising one or more of titanium, tantalum, niobium, and alloys thereof, wherein the coating comprises at least one of Pt, TiN, IrOx, and poly(dioctyl-bithiophene) (PDOT). In some examples, the lead wire may be coupled to the lead wire via a weld, such as, e.g., a laser weld.
    Type: Grant
    Filed: March 12, 2014
    Date of Patent: September 10, 2019
    Assignee: Medtronic, Inc.
    Inventors: Alan Shi, Darren A. Janzig, Bernard Q. Li, Richard T. Stone, Dale F. Seeley, Peng Cong
  • Patent number: 10384050
    Abstract: An implantable medical leads has a conductor that includes one or more metal wires and one or more carbon nanotube wires extending in substantially the same direction as the one or more metal wires. Such conductors may result in less MRI-induced heating at electrodes of leads than conductors that do not contain carbon nanotubes.
    Type: Grant
    Filed: June 24, 2015
    Date of Patent: August 20, 2019
    Assignee: MEDTRONIC, INC.
    Inventors: Mallika Kamarajugadda, Mark Breyen, Suping Lyu, Bernard Q. Li, Qin Zhang, Jacob Popp
  • Publication number: 20190126028
    Abstract: An implantable medical device (IMD) has a housing enclosing an electronic circuit. The housing includes a first housing portion, a second housing portion and a joint coupling the first housing portion to the second housing portion. A polymer seal is positioned in the joint in various embodiments. Other embodiments of an IMD housing are disclosed.
    Type: Application
    Filed: December 26, 2018
    Publication date: May 2, 2019
    Inventors: Brad C. Tischendorf, John E. Kast, Thomas P. Miltich, Gordon O. Munns, Randy S. Roles, Craig L. Schmidt, Joseph J. Viavattine, Christian S. Nielsen, Prabhakar A. Tamirisa, Anthony M. Chasensky, Markus W. Reiterer, Chris J. Paidosh, Reginald D. Robinson, Bernard Q. Li, Erik R. Scott, Phillip C. Falkner, Xuan K. Wei, Eric H. Bonde
  • Patent number: 10201335
    Abstract: An implantable medical device (IMD) has a housing enclosing an electronic circuit. The housing includes a first housing portion, a second housing portion and a joint coupling the first housing portion to the second housing portion. A polymer seal is positioned in the joint in various embodiments. Other embodiments of an IMD housing are disclosed.
    Type: Grant
    Filed: July 25, 2016
    Date of Patent: February 12, 2019
    Assignee: Medtronic, Inc.
    Inventors: Brad C. Tischendorf, John E. Kast, Thomas P. Miltich, Gordon O. Munns, Randy S. Roles, Craig L. Schmidt, Joseph J. Viavattine, Christian S. Nielsen, Prabhakar A. Tamirisa, Anthony M. Chasensky, Markus W. Reiterer, Chris J. Paidosh, Reginald D. Robinson, Bernard Q. Li, Erik R. Scott, Phillip C. Falkner, Xuan K. Wei, Eric H. Bonde
  • Publication number: 20170259055
    Abstract: A method of forming a medical device contact element includes annealing an elongated rod of Ti-15Mo alloy material to form an annealed rod having a Young's Modulus of less than 13.5 Mpsi and an elastic range or strain of at least 0.7%. Then forming a contact ring element from the annealed rod and assembling the contact ring element into a medical device. Contact rings and lead receptacles including the same are also described.
    Type: Application
    Filed: May 31, 2017
    Publication date: September 14, 2017
    Inventors: Bernard Q. Li, Alan Shi, Daniel D. Sorensen, Darren A. Janzig, Margaret Bush
  • Patent number: 9737660
    Abstract: A therapeutic fluid delivery device that includes at least one controllable valve is generally described. In one example, an implantable therapeutic fluid delivery system includes a first fluid pathway configured to convey a first therapeutic fluid and a second fluid pathway configured to convey a second therapeutic fluid, the second fluid pathway being separate from the first fluid pathway. The therapeutic fluid delivery system includes a valve connected to the first fluid pathway and the second fluid pathway, and a processor configured to control actuation of the valve to open and close the first fluid pathway and to open and close the second fluid pathway.
    Type: Grant
    Filed: August 25, 2011
    Date of Patent: August 22, 2017
    Assignee: Medtronic, Inc.
    Inventors: Reginald D. Robinson, Mary E. Robischon, Bernard Q. Li, Irfan Z. Ali, Steven R. Christenson, Keith A. Miesel
  • Patent number: 9724784
    Abstract: In general, the disclosure is directed toward transmitting radiant energy across a boundary of a medical device via an optical feedthrough. A system for transmitting radiant energy across a boundary of a medical device includes a first functional module of a medical device, a second functional module of the medical device, an optical feedthrough assembly coupled to the first functional module, and a radiant energy source that emits a beam through the optical feedthrough assembly to perform a manufacturing process on the first functional module and the second functional module.
    Type: Grant
    Filed: March 10, 2009
    Date of Patent: August 8, 2017
    Assignee: Medtronic, Inc.
    Inventors: Reginald D. Robinson, David D. Differding, James A. Johnson, Bernard Q. Li, Gerald G. Lindner, Brad C. Tischendorf, Andrew J. Thom
  • Publication number: 20170189669
    Abstract: An implantable medical leads has a conductor that includes one or more metal wires and one or more carbon nanotube wires extending in substantially the same direction as the one or more metal wires. Such conductors may result in less MRI-induced heating at electrodes of leads than conductors that do not contain carbon nanotubes.
    Type: Application
    Filed: June 24, 2015
    Publication date: July 6, 2017
    Inventors: Mallika Kamarajugadda, Mark Breyen, Suping Lyu, Bernard Q. Li, Qin Zhang, Jacob Popp
  • Patent number: 9694173
    Abstract: A method of forming a medical device contact element includes annealing an elongated rod of Ti-15Mo alloy material to form an annealed rod having a Young's Modulus of less than 13.5 Mpsi and an elastic range or strain of at least 0.7%. Then forming a contact ring element from the annealed rod and assembling the contact ring element into a medical device. Contact rings and lead receptacles including the same are also described.
    Type: Grant
    Filed: March 6, 2015
    Date of Patent: July 4, 2017
    Assignee: MEDTRONIC, INC.
    Inventors: Bernard Q. Li, Alan Shi, Daniel D. Sorensen, Darren A. Janzig, Margaret Bush
  • Publication number: 20160331978
    Abstract: An implantable medical device (IMD) has a housing enclosing an electronic circuit. The housing includes a first housing portion, a second housing portion and a joint coupling the first housing portion to the second housing portion. A polymer seal is positioned in the joint in various embodiments. Other embodiments of an IMD housing are disclosed.
    Type: Application
    Filed: July 25, 2016
    Publication date: November 17, 2016
    Inventors: Brad C. Tischendorf, John E. Kast, Thomas P. Miltich, Gordon O. Munns, Randy S. Roles, Craig L. Schmidt, Joseph J. Viavattine, Christian S. Nielsen, Prabhakar A. Tamirisa, Anthony M. Chasensky, Markus W. Reiterer, Chris J. Paidosh, Reginald D. Robinson, Bernard Q. Li, Erik R. Scott, Phillip C. Falkner, Xuan K. Wei, Eric H. Bonde
  • Patent number: 9409008
    Abstract: Techniques are disclosed related to cables that may be used within a medical device. According to one example, a cable may comprise multiple wires. Each wire may be formed of a biocompatible beta titanium alloy having an elastic modulus ranging from 30 GigaPascals (GPa) to 90 GPa and comprising at least two elements selected from a group of titanium, molybdenum, niobium, tantalum, zirconium, chromium, iron and tin. The cable may be heated to a stress-relieve temperature of the beta titanium alloy to allow the cable to retain a desired configuration while remaining ductile. The cable may be included within a medical device, such as a medical electrical lead.
    Type: Grant
    Filed: April 22, 2011
    Date of Patent: August 9, 2016
    Assignee: MEDTRONIC, INC.
    Inventors: Bernard Q. Li, Ling Wang
  • Patent number: 9398901
    Abstract: An implantable medical device (IMD) has a housing enclosing an electronic circuit. The housing includes a first housing portion, a second housing portion and a joint coupling the first housing portion to the second housing portion. A polymer enclosure member surrounds the joint and circumscribes the housing in various embodiments. Other embodiments of an IMD housing are disclosed.
    Type: Grant
    Filed: December 6, 2013
    Date of Patent: July 26, 2016
    Assignee: Medtronic, Inc.
    Inventors: Brad C. Tischendorf, John E. Kast, Thomas P. Miltich, Gordon O. Munns, Randy S. Roles, Craig L. Schmidt, Joseph J. Viavattine, Christian S. Nielsen, Prabhakar A. Tamirisa, Anthony M. Chasensky, Markus W. Reiterer, Chris J. Paidosh, Reginald D. Robinson, Bernard Q. Li, Erik R. Scott, Phillip C. Falkner, Xuan K. Wei, Eric H. Bonde
  • Patent number: 9238093
    Abstract: The invention describes a process to remove a recast layer and/or burrs from machining processes to provide a surface of a titanium medical device without dissipation of copper or zinc from the surface of the medical device.
    Type: Grant
    Filed: November 21, 2011
    Date of Patent: January 19, 2016
    Assignee: Medtronic, Inc
    Inventors: Alan Shi, Bernard Q. Li, Daniel D. Sorensen, Darren A. Janzig
  • Patent number: 9220886
    Abstract: A filar includes an inner conductive core that is formed of a low-resistivity material such as silver having a resistivity of less than 20 ?? per centimeter. A conductive coil is provided around the core to form a filar. This coil is formed of a biocompatible alloy or super alloy having an ultimate tensile strength (UTS) of between 150 kilo pounds per square inch (ksi) and 280 ksi at room temperature. Examples of such alloys include CoCrMo, CoFeCrMo, and CoFeNiCrMo. In one specific embodiment, the alloy is MP35N (CoNiCrMo), which may be low-titanium (“low-ti”) MP35N. One or more such filars may be included within a wire. This wire may be carried by an implantable medical apparatus such as a lead, lead extension, or catheter. The wire may electrically couple elements such as connector electrodes to conducting electrodes or sensors.
    Type: Grant
    Filed: January 24, 2014
    Date of Patent: December 29, 2015
    Assignee: MEDTRONIC, INC.
    Inventors: Ling Wang, Bernard Q. Li
  • Publication number: 20150250997
    Abstract: A method of forming a medical device contact element includes annealing an elongated rod of Ti-15Mo alloy material to form an annealed rod having a Young's Modulus of less than 13.5 Mpsi and an elastic range or strain of at least 0.7%. Then forming a contact ring element from the annealed rod and assembling the contact ring element into a medical device. Contact rings and lead receptacles including the same are also described.
    Type: Application
    Filed: March 6, 2015
    Publication date: September 10, 2015
    Inventors: Bernard Q. Li, Alan Shi, Daniel D. Sorensen, Darren A. Janzig, Margaret Bush
  • Publication number: 20140343644
    Abstract: In some examples, the disclosure relates to a medical device comprising a lead including an electrically conductive lead wire; and an electrode electrically coupled to the lead wire, the electrode including a substrate and a coating on an outer surface of the substrate, wherein the lead wire is formed of a composition comprising titanium or titanium alloys, wherein the substrate is formed of a composition comprising one or more of titanium, tantalum, niobium, and alloys thereof, wherein the coating comprises at least one of Pt, TiN, IrOx, and poly(dioctyl-bithiophene) (PDOT). In some examples, the lead wire may be coupled to the lead wire via a weld, such as, e.g., a laser weld.
    Type: Application
    Filed: March 12, 2014
    Publication date: November 20, 2014
    Applicant: Medtronic, Inc.
    Inventors: Alan Shi, Darren A. Janzig, Bernard Q. Li, Richard T. Stone, Dale F. Seeley, Peng Cong
  • Patent number: 8843214
    Abstract: Techniques are disclosed related to wires that may be used within a medical device. According to one example, a wire may include a core formed of a material having a resistivity of less than 25 micro-ohm-cm and a layer of a biocompatible beta titanium alloy surrounding the core. As one example, the beta titanium alloy has an elastic modulus ranging from 30 GigaPascals (GPa) to 90 GPa and comprises at least two elements from a group consisting of titanium, molybdenum, niobium, tantalum, zirconium, chromium, iron and tin. In one embodiment, the core may be formed of silver, tantalum, a tantalum alloy, niobium, a niobium alloy, platinum, a platinum alloy, palladium, or a palladium alloy. In some examples, one or more wires may be incorporated into a coil or a cable and one or more such coils or cables may be carried by a medical device such as a medical electrical lead.
    Type: Grant
    Filed: January 17, 2014
    Date of Patent: September 23, 2014
    Assignee: Medtronic, Inc.
    Inventors: Bernard Q. Li, Ling Wang
  • Publication number: 20140277316
    Abstract: In some examples, the disclosure relates to a medical device comprising a lead including an electrically conductive lead wire; and an electrode electrically coupled to the lead wire, the electrode including a first portion and a second portion, wherein the first portion defines an exposed outer surface of the electrode and is electrically coupled to the second portion along a first interface, wherein the second portion is electrically coupled to the lead wire along a second interface different from the first interface via welding to couple the lead wire to the electrode, wherein an electrical signal may be transferred between the lead wire and exposed outer surface of the first portion via the second portion, and wherein the first portion is formed from a first material having a first composition, and the second portion is formed from a second material having a second composition different from the first composition.
    Type: Application
    Filed: March 13, 2014
    Publication date: September 18, 2014
    Applicant: Medtronic, Inc.
    Inventors: Xingfu Chen, Bernard Q. Li, Richard T. Stone, Dale F. Seeley, Alan Shi
  • Publication number: 20140163646
    Abstract: An implantable medical device (IMD) has a housing enclosing an electronic circuit. The housing includes a first housing portion, a second housing portion and a joint coupling the first housing portion to the second housing portion. A polymer enclosure member surrounds the joint and circumscribes the housing in various embodiments. Other embodiments of an IMD housing are disclosed.
    Type: Application
    Filed: December 6, 2013
    Publication date: June 12, 2014
    Applicant: Medtronic, Inc.
    Inventors: Brad C. Tischendorf, John E. Kast, Thomas P. Miltich, Gordon O. Munns, Randy S. Roles, Craig L. Schmidt, Joseph J. Viavattine, Christian S. Nielsen, Prabhakar A. Tamirisa, Anthony M. Chasensky, Markus W. Reiterer, Chris J. Paidosh, Reginald D. Robinson, Bernard Q. Li, Erik R. Scott, Phillip C. Falkner, Xuan K. Wei, Eric H. Bonde
  • Publication number: 20140142672
    Abstract: A filar includes an inner conductive core that is formed of a low-resistivity material such as silver having a resistivity of less than 20 ?? per centimeter. A conductive coil is provided around the core to form a filar. This coil is formed of a biocompatible alloy or super alloy having an ultimate tensile strength (UTS) of between 150 kilo pounds per square inch (ksi) and 280 ksi at room temperature. Examples of such alloys include CoCrMo, CoFeCrMo, and CoFeNiCrMo. In one specific embodiment, the alloy is MP35N (CoNiCrMo), which may be low-titanium (“low-ti”) MP35N. One or more such filars may be included within a wire. This wire may be carried by an implantable medical apparatus such as a lead, lead extension, or catheter. The wire may electrically couple elements such as connector electrodes to conducting electrodes or sensors.
    Type: Application
    Filed: January 24, 2014
    Publication date: May 22, 2014
    Applicant: MEDTRONIC, INC.
    Inventors: Ling Wang, Bernard Q. Li