Patents by Inventor Bernard R. Weinberger

Bernard R. Weinberger has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 5479059
    Abstract: A superconductor magnetic bearing includes a shaft (10) that is subject to a load (L) and rotatable around an axis of rotation, a magnet (12) mounted to the shaft, and a stator (14) in proximity to the shaft. The stator (14) has a superconductor thin film assembly (16) positioned to interact with the magnet (12) to produce a levitation force on the shaft (10) that supports the load (L). The thin film assembly (16) includes at least two superconductor thin films (18) and at least one substrate (20). Each thin film (18) is positioned on a substrate (20) and all the thin films are positioned such that an applied magnetic field from the magnet (12) passes through all the thin films. A similar bearing in which the thin film assembly (16) is mounted on the shaft (10) and the magnet (12) is part of the stator (14) also can be constructed.
    Type: Grant
    Filed: August 23, 1993
    Date of Patent: December 26, 1995
    Assignee: United Technologies Corporation
    Inventor: Bernard R. Weinberger
  • Patent number: 5256638
    Abstract: A magnetically levitated superconducting bearing includes a magnet (2) mounted on a shaft (12) that is rotatable around an axis of rotation and a Type II superconductor (6) supported on a stator (14) in proximity to the magnet (2). The superconductor (6) is positioned so that when it is cooled to its superconducting state in the presence of a magnetic field, it interacts with the magnet (2) to produce an attractive force that levitates the magnet (2) and supports a load on the shaft (12). The interaction between the superconductor (6) and magnet(2) also produces surface screening currents (8) that generate a repulsive force perpendicular to the load. The bearing also has means for maintaining the superconductor at a temperature below its critical temperature (16, 18). The bearing could also be constructed so the magnet (2) is supported on the stator (14) and the superconductor (6) is mounted on the shaft (12).
    Type: Grant
    Filed: November 14, 1991
    Date of Patent: October 26, 1993
    Assignee: United Technologies Corporation
    Inventors: Bernard R. Weinberger, Lahmer Lynds, Jr.
  • Patent number: 5214981
    Abstract: A flywheel having superconductor bearings has a lower drag to lift ratio that translates to an improvement of a factor of ten in the rotational decay rate. The lower drag results from the lower dissipation of melt-processed YBCO, improved uniformity of the permanent magnet portion of the bearings, operation in a different range of vacuum pressure from that taught by the art, and greater separation distance from the rotating members of conductive materials.
    Type: Grant
    Filed: July 26, 1991
    Date of Patent: June 1, 1993
    Assignee: Arch Development Corporation
    Inventors: Bernard R. Weinberger, Lahmer Lynds, Jr., John R. Hull
  • Patent number: 5173606
    Abstract: A superconductor electromagnetic radiation detector includes a superconductor composite (2) that has a matrix (6) transparent to electromagnetic radiation wavelengths to be detected and a plurality of superconductor particles (4) dispersed in the matrix (6). The detector also includes remote means for detecting a physical response of the superconductor particles (4) to electromagnetic radiation. The physical response of the superconductor particles (4) to electromagnetic radiation indicates the presence of electromagnetic radiation. A method of detecting electromagnetic radiation includes illuminating a plurality of superconductor particles (4) dispersed in the matrix (6) of a superconductor composite (2) with electromagnetic radiation and remotely detecting a physical response to the superconductor particles (4) to the electromagnetic radiation.
    Type: Grant
    Filed: September 3, 1991
    Date of Patent: December 22, 1992
    Assignee: United Technologies Corporation
    Inventors: Bernard R. Weinberger, Daniel M. Potrepka, Lahmer Lynds, Jr.
  • Patent number: 4608097
    Abstract: A method is described for producing an electronically passivated stable surface on silicon wafers. The passivation technique consists of first fluorinating the surface of a crystalline silicon wafer under inert atmospheric conditions. Such a treatment may consist of either a vapor phase or liquid phase application of HF at room temperature. The surface fluorinated wafer is then maintained in an inert atmosphere and a thin coating of an organic solid is applied to the wafer which does not disturb the underlying passivated silicon surface. The wafer may then be further processed into a variety of different devices.
    Type: Grant
    Filed: October 5, 1984
    Date of Patent: August 26, 1986
    Assignee: Exxon Research and Engineering Co.
    Inventors: Bernard R. Weinberger, Harry W. Deckman, Eli Yablonovitch