Patents by Inventor Bernard Roy Mack

Bernard Roy Mack has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11673815
    Abstract: The present invention relates to a system and process for treating a feedwater wherein the system includes at least one RO or nanofiltration unit that receives a feed under high pressure and produces a concentrate that is directed to and held at low pressure in a concentrate accumulator. Generally the permeate or the inlet feedwater is maintained at a constant flow rate. Periodically the system is switched from a mode 1 or normal operating process to a mode 2 where the concentrate is drained from the concentrate accumulator. However, in mode 2, the feedwater is still directed into the system and through the RO or nanofiltration unit which produces the permeate and the concentrate.
    Type: Grant
    Filed: December 30, 2021
    Date of Patent: June 13, 2023
    Assignee: Veolia Water Solutions & Technologies Support
    Inventors: Bernard Roy Mack, Dale L. Wynkoop
  • Publication number: 20220144655
    Abstract: A method is disclosed for concentrating and purifying an eluate brine and producing a purified lithium compound. An extraction eluate, rich in lithium, is directed to a nanofiltration unit or a softening process that removes sulfate and/or calcium and magnesium. Permeate from the nanofiltration unit or the effluent from the softening process is directed through an electrodialysis unit. As the lithium-rich solution moves through the electrodialysis unit, lithium, sodium and chloride ions pass from the solution through a cation-transfer membrane and an anion-transfer membrane to concentrate compartments. A dilute stream is directed through the concentrate compartments and collects the lithium, sodium and chloride ions. The electrodialysis unit also produces a product stream which contains non-ionized impurities, such as silica and/or boron. Concentrate from the electrodialysis unit is subject to a precipitation process that produces a lithium compound that is subsequently subjected to a purification process.
    Type: Application
    Filed: March 9, 2020
    Publication date: May 12, 2022
    Applicant: Veolia Water Solutions & Technologies Support
    Inventor: Bernard Roy Mack
  • Publication number: 20220119281
    Abstract: The present invention relates to a system and process for treating a feedwater wherein the system includes at least one RO or nanofiltration unit that receives a feed under high pressure and produces a concentrate that is directed to and held at low pressure in a concentrate accumulator. Generally the permeate or the inlet feedwater is maintained at a constant flow rate. Periodically the system is switched from a mode 1 or normal operating process to a mode 2 where the concentrate is drained from the concentrate accumulator. However, in mode 2, the feedwater is still directed into the system and through the RO or nanofiltration unit which produces the permeate and the concentrate.
    Type: Application
    Filed: December 30, 2021
    Publication date: April 21, 2022
    Inventors: Bernard Roy Mack, Dale L. Wynkoop
  • Patent number: 11230479
    Abstract: The present invention relates to a system and process for treating a feedwater wherein the system includes at least one RO or nanofiltration unit that receives a feed under high pressure and produces a concentrate that is directed to and held at low pressure in a concentrate accumulator. Generally the permeate or the inlet feedwater is maintained at a constant flow rate. Periodically the system is switched from a mode 1 or normal operating process to a mode 2 where the concentrate is drained from the concentrate accumulator. However, in mode 2, the feedwater is still directed into the system and through the RO or nanofiltration unit which produces the permeate and the concentrate.
    Type: Grant
    Filed: January 8, 2018
    Date of Patent: January 25, 2022
    Assignee: Veolia Water Solutions & Technologies Support
    Inventors: Bernard Roy Mack, Dale L. Wynkoop
  • Publication number: 20210322929
    Abstract: A high recovery variable volume reverse osmosis system where the volume of concentrate cycled through the RO system is reduced in response to recovery levels increasing. By reducing the volume of concentrate cycled through the RO system, this reduces the cycle time of highly saturated concentrate passing through the RO system. Reducing the cycle time of concentrate passing through the RO system tends to minimize or reduce membrane scaling.
    Type: Application
    Filed: August 13, 2019
    Publication date: October 21, 2021
    Applicant: Veolia Water Solutions & Technologies Support
    Inventors: Bernard Roy MACK, Kevin ROLLINGS
  • Patent number: 11008240
    Abstract: The instant application is directed towards methods for removing sulfide from a wastewater stream. The pH of the wastewater stream is adjusted to between 7.0 and 8.0. A first oxidizing agent is mixed with the wastewater stream, oxidizing the sulfide to elemental sulfur. The wastewater stream is then softened by mixing lime with the wastewater stream. The addition of lime further raises the pH of the wastewater stream to 10.0 or higher, and converts the elemental sulfur to soluble sulfide (S2-) and/or thio-sulfate. Calcium carbonate is precipitated and sulfide (S2-) and/or thio-sulfate is adsorbed thereon. Thereafter, the wastewater stream is directed to a solids-liquid separation process, which separates the calcium carbonate and adsorbed sulfide (S2-) and/or thio-sulfate from the wastewater stream. The solids-liquid separator produces an effluent that includes residual elemental sulfur.
    Type: Grant
    Filed: February 15, 2017
    Date of Patent: May 18, 2021
    Assignee: Veolia Water Solutions & Technologies Support
    Inventors: Kashi Banerjee, Srikanth Muddasani, David E. Parker, Bernard Roy Mack
  • Patent number: 10941046
    Abstract: The present invention relates to a process for producing sodium bicarbonate crystals. Sodium carbonate derived from TRONA ore is mixed with a treated mother liquor produced in a downstream process to form a sodium carbonate solution. The sodium carbonate solution is subjected to a crystallization process that produces sodium bicarbonate crystals. The sodium bicarbonate crystals are separated from the sodium carbonate solution to form a mother liquor that includes silica. To remove the silica in the mother liquor, the mother liquor is directed to a reactor where an aluminum salt is mixed with the mother liquor to precipitate hydrous aluminum oxide which adsorbs silica thereon. The hydrous aluminum oxide with adsorbed silica is removed from the mother liquor. This produces the treated mother liquor that is mixed with the sodium carbonate and which forms the sodium carbonate solutions.
    Type: Grant
    Filed: September 13, 2017
    Date of Patent: March 9, 2021
    Assignee: Veolia Water Solutions & Technologies Support
    Inventors: Bernard Roy Mack, Kashi Banerjee
  • Publication number: 20200290910
    Abstract: The instant application is directed towards methods for removing sulfide from a wastewater stream. The pH of the wastewater stream is adjusted to between 7.0 and 8.0. A first oxidizing agent is mixed with the wastewater stream, oxidizing the sulfide to elemental sulfur. The wastewater stream is then softened by mixing lime with the wastewater stream. The addition of lime further raises the pH of the wastewater stream to 10.0 or higher, and converts the elemental sulfur to soluble sulfide (S2-) and/or thio-sulfate. Calcium carbonate is precipitated and sulfide (S2-) and/or thio-sulfate is adsorbed thereon. Thereafter, the wastewater stream is directed to a solids-liquid separation process, which separates the calcium carbonate and adsorbed sulfide (S2-) and/or thio-sulfate from the wastewater stream. The solids-liquid separator produces an effluent that includes residual elemental sulfur.
    Type: Application
    Filed: February 15, 2017
    Publication date: September 17, 2020
    Applicant: Veolia Water Solutions & Technologies Support
    Inventors: Kashi Banerjee, Srikanth Muddasani, David E. Parker, Bernard Roy Mack
  • Publication number: 20190241439
    Abstract: The present invention relates to a process for producing sodium bicarbonate crystals. Sodium carbonate derived from TRONA ore is mixed with a treated mother liquor produced in a downstream process to form a sodium carbonate solution. The sodium carbonate solution is subjected to a crystallization process that produces sodium bicarbonate crystals. The sodium bicarbonate crystals are separated from the sodium carbonate solution to form a mother liquor that includes silica. To remove the silica in the mother liquor, the mother liquor is directed to a reactor where an aluminum salt is mixed with the mother liquor to precipitate hydrous aluminum oxide which adsorbs silica thereon. The hydrous aluminum oxide with adsorbed silica is removed from the mother liquor. This produces the treated mother liquor that is mixed with the sodium carbonate and which forms the sodium carbonate solutions.
    Type: Application
    Filed: September 13, 2017
    Publication date: August 8, 2019
    Applicant: Veolia Water Solutions & Technologies Support
    Inventors: Bernard Roy Mack, Kashi Banerjee