Patents by Inventor Bernd Barchmann

Bernd Barchmann has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230352617
    Abstract: An optoelectronic semiconductor component includes an optoelectronic semiconductor chip having a top area at a top side, a bottom area at an underside, at least one side area connecting the top area and the bottom area; electrical contact locations at the top area or at the bottom area of the optoelectronic semiconductor chip; and a molded body, wherein the molded body surrounds the optoelectronic semiconductor chip at all side areas at least in places, the molded body is electrically insulating, and the molded body is free of any conductive element that completely penetrates the molded body.
    Type: Application
    Filed: June 22, 2023
    Publication date: November 2, 2023
    Inventors: Karl Weidner, Ralph Wirth, Axel Kaltenbacher, Walter Wegleiter, Bernd Barchmann, Oliver Wutz, Jan Marfeld
  • Patent number: 11749776
    Abstract: A method of producing an optoelectronic semiconductor component includes providing a carrier; arranging at least one optoelectronic semiconductor chip at a top side of the carrier, wherein the semiconductor chip includes semiconductor layers deposited on a substrate; forming a shaped body around the at least one optoelectronic semiconductor chip, wherein the shaped body surrounds all side areas of the at least one optoelectronic semiconductor chip and at least some of the layers deposited on the substrate are free of the shaped body such that these layers are not covered or completely exposed; and removing the carrier.
    Type: Grant
    Filed: December 16, 2021
    Date of Patent: September 5, 2023
    Assignee: OSRAM Opto Semiconductors GmbH
    Inventors: Karl Weidner, Ralph Wirth, Axel Kaltenbacher, Walter Wegleiter, Bernd Barchmann, Oliver Wutz, Jan Marfeld
  • Publication number: 20220109082
    Abstract: A method of producing an optoelectronic semiconductor component includes providing a carrier; arranging at least one optoelectronic semiconductor chip at a top side of the carrier, wherein the semiconductor chip includes semiconductor layers deposited on a substrate; forming a shaped body around the at least one optoelectronic semiconductor chip, wherein the shaped body surrounds all side areas of the at least one optoelectronic semiconductor chip and at least some of the layers deposited on the substrate are free of the shaped body such that these layers are not covered or completely exposed; and removing the carrier.
    Type: Application
    Filed: December 16, 2021
    Publication date: April 7, 2022
    Inventors: Karl Weidner, Ralph Wirth, Axel Kaltenbacher, Walter Wegleiter, Bernd Barchmann, Oliver Wutz, Jan Marfeld
  • Patent number: 11239386
    Abstract: An optoelectronic semiconductor component includes an optoelectronic semiconductor chip having a top area at a top side, a bottom area at an underside, side areas connecting the top area and the bottom area, and epitaxially produced layers; electrical n- and p-side contacts at the bottom area of the optoelectronic semiconductor chip; and an electrically insulating shaped body, wherein the shaped body surrounds the optoelectronic semiconductor chip at its side areas, and the epitaxially produced layers are free from the shaped body.
    Type: Grant
    Filed: April 17, 2020
    Date of Patent: February 1, 2022
    Assignee: OSRAM Opto Semiconductors GmbH
    Inventors: Karl Weidner, Ralph Wirth, Axel Kaltenbacher, Walter Wegleiter, Bernd Barchmann, Oliver Wutz, Jan Marfeld
  • Publication number: 20200251612
    Abstract: An optoelectronic semiconductor component includes an optoelectronic semiconductor chip having a top area at a top side, a bottom area at an underside, side areas connecting the top area and the bottom area, and epitaxially produced layers; electrical n- and p-side contacts at the bottom area of the optoelectronic semiconductor chip; and an electrically insulating shaped body, wherein the shaped body surrounds the optoelectronic semiconductor chip at its side areas, and the epitaxially produced layers are free from the shaped body.
    Type: Application
    Filed: April 17, 2020
    Publication date: August 6, 2020
    Inventors: Karl Weidner, Ralph Wirth, Axel Kaltenbacher, Walter Wegleiter, Bernd Barchmann, Oliver Wutz, Jan Marfeld
  • Patent number: 10665747
    Abstract: A method of producing an optoelectronic semiconductor component includes providing a carrier, arranging at least one optoelectronic semiconductor chip at a top side of the carrier, applying a phosphor layer at the at least one semiconductor chip, forming a shaped body around the at least one optoelectronic semiconductor chip, wherein the shaped body surrounds all side areas of the at least one optoelectronic semiconductor chip, and removing the carrier, wherein the phosphor layer is applied before forming the shaped body.
    Type: Grant
    Filed: April 26, 2018
    Date of Patent: May 26, 2020
    Assignee: OSRAM Opto Semiconductors GmbH
    Inventors: Karl Weidner, Ralph Wirth, Axel Kaltenbacher, Walter Wegleiter, Bernd Barchmann, Oliver Wutz, Jan Marfeld
  • Patent number: 10205071
    Abstract: A method of producing optoelectronic semiconductor components includes providing a carrier with a carrier underside and a carrier top. The carrier has a metallic core material and at least on the carrier top a metal layer. A dielectric mirror is applied to the core material. At least two holes are formed through the carrier. A ceramic layer with a thickness of at most 150 ?m at least on the carrier underside and in the holes is produced. The ceramic layer includes the core material as a component. Metallic contact layers are applied to at least subregions of the ceramic layer on the carrier underside and in the holes so that the carrier top electrically connects to the carrier underside through the holes. At least one radiation-emitting semiconductor chip is applied to the carrier top and the semiconductor chip is electronically bonded to the contact layers.
    Type: Grant
    Filed: May 19, 2016
    Date of Patent: February 12, 2019
    Assignee: OSRAM Opto Semiconductors GmbH
    Inventors: Thomas Schwarz, Andreas Biebersdorf, Dirk Becker, Bernd Barchmann, Björn Hoxhold, Philipp Schlosser, Andreas Waldschik
  • Publication number: 20180368257
    Abstract: In various embodiments, a substrate for receiving an optoelectronic component is provided. The substrate includes a carrier body, and filler particles, which are embedded in the carrier body and which each have an electrically and thermally highly conductive core and an electrically insulating enveloping layer.
    Type: Application
    Filed: June 19, 2018
    Publication date: December 20, 2018
    Inventors: Bernd Barchmann, Gertrud Kraeuter, Matthias Loster
  • Patent number: 10134943
    Abstract: A method for producing a multiplicity of semiconductor chips (13) is provided, comprising the following steps: —providing a wafer (1) comprising a multiplicity of semiconductor bodies (2), wherein separating lines (9) are arranged between the semiconductor bodies (2), —depositing a contact layer (10) on the wafer (1), wherein the material of the contact layer (10) is chosen from the following group: platinum, rhodium, palladium, gold, and the contact layer (10) has a thickness of between 8 nanometers and 250 nanometers, inclusive, —applying the wafer (1) to a film (11), —at least partially severing the wafer (1) in the vertical direction along the separating lines (9) or introducing fracture nuclei (12) into the wafer (1) along the separating lines (9), and —breaking the wafer (1) along the separating lines (9) or expanding the film (11) such that a spatial separation of the semiconductor chips (13) takes place, wherein the contact layer (10) is also separated.
    Type: Grant
    Filed: November 30, 2015
    Date of Patent: November 20, 2018
    Assignee: OSRAM OPTO SEMICONDUCTORS GMBH
    Inventors: Bernd Barchmann, Fabian Eigenmann, Andreas Ploessl
  • Publication number: 20180248074
    Abstract: A method of producing an optoelectronic semiconductor component includes providing a carrier, arranging at least one optoelectronic semiconductor chip at a top side of the carrier, applying a phosphor layer at the at least one semiconductor chip, forming a shaped body around the at least one optoelectronic semiconductor chip, wherein the shaped body surrounds all side areas of the at least one optoelectronic semiconductor chip, and removing the carrier, wherein the phosphor layer is applied before forming the shaped body.
    Type: Application
    Filed: April 26, 2018
    Publication date: August 30, 2018
    Inventors: Karl Weidner, Ralph Wirth, Axel Kaltenbacher, Walter Wegleiter, Bernd Barchmann, Oliver Wutz, Jan Marfeld
  • Patent number: 9985171
    Abstract: An optoelectronic semiconductor component includes an optoelectronic semiconductor chip having a top area at a top side, a bottom area at an underside, and side areas connecting the top area and the bottom area; electrical contact locations at the top area or at the bottom area of the optoelectronic semiconductor chip; and an electrically insulating shaped body, wherein the optoelectronic semiconductor chip is a flip-chip having the electrical contract locations only at one side, either the underside or the top side, the shaped body surrounds the optoelectronic semiconductor chip at its side areas, and the shaped body is free of a via that electrically connects the optoelectronic semiconductor chip.
    Type: Grant
    Filed: June 26, 2017
    Date of Patent: May 29, 2018
    Assignee: OSRAM Opto Semiconductors GmbH
    Inventors: Karl Weidner, Ralph Wirth, Axel Kaltenbacher, Walter Wegleiter, Bernd Barchmann, Oliver Wutz, Jan Marfeld
  • Publication number: 20180145234
    Abstract: A method of producing optoelectronic semiconductor components includes providing a carrier with a carrier underside and a carrier top, wherein the carrier has a metallic core material and at least on the carrier top a metal layer and following this a dielectric mirror are applied to the core material, forming at least two holes through the carrier, producing a ceramic layer with a thickness of at most 150 ?m at least on the carrier underside and in the holes, wherein the ceramic layer includes the core material as a component, applying metallic contact layers to at least subregions of the ceramic layer on the carrier underside and in the holes so that the carrier top electrically connects to the carrier underside through the holes, and applying at least one radiation-emitting semiconductor chip to the carrier top and electrical bonding of the semiconductor chip to the contact layers.
    Type: Application
    Filed: May 19, 2016
    Publication date: May 24, 2018
    Inventors: Thomas Schwarz, Andreas Biebersdorf, Dirk Becker, Bernd Barchmann, Björn Hoxhold, Philipp Schlosser, Andreas Waldschik
  • Publication number: 20170365736
    Abstract: A method for producing a multiplicity of semiconductor chips (13) is provided, comprising the following steps: providing a wafer (1) comprising a multiplicity of semiconductor bodies (2), wherein separating lines (9) are arranged between the semiconductor bodies (2), depositing a contact layer (10) on the wafer (1), wherein the material of the contact layer (10) is chosen from the following group: platinum, rhodium, palladium, gold, and the contact layer (10) has a thickness of between 8 nanometres and 250 nanometres, inclusive, applying; the wafer (1) to a film (11), at least partially severing the wafer (1) in the vertical direction along the separating lines (9) or introducing fracture nuclei (12) into the wafer (1) along the separating lines (9), and breaking the wafer (1) along the separating lines (9) or expanding the film (11) such that a spatial separation of the semiconductor chips (13) takes place, wherein the contact layer (10) is also separated.
    Type: Application
    Filed: November 30, 2015
    Publication date: December 21, 2017
    Inventors: Bernd BARCHMANN, Fabian EIGENMANN, Andreas PLOESSL
  • Publication number: 20170294552
    Abstract: An optoelectronic semiconductor component includes an optoelectronic semiconductor chip having a top area at a top side, a bottom area at an underside, and side areas connecting the top area and the bottom area; electrical contact locations at the top area or at the bottom area of the optoelectronic semiconductor chip; and an electrically insulating shaped body, wherein the optoelectronic semiconductor chip is a flip-chip having the electrical contract locations only at one side, either the underside or the top side, the shaped body surrounds the optoelectronic semiconductor chip at its side areas, and the shaped body is free of a via that electrically connects the optoelectronic semiconductor chip.
    Type: Application
    Filed: June 26, 2017
    Publication date: October 12, 2017
    Inventors: Karl Weidner, Ralph Wirth, Axel Kaltenbacher, Walter Wegleiter, Bernd Barchmann, Oliver Wutz, Jan Marfeld
  • Patent number: 9728683
    Abstract: An optoelectronic semiconductor component includes an optoelectronic semiconductor chip having side areas covered by a shaped body; at least one via including an electrically conductive material; and at least one electrically conductive connection electrically conductively connected to the semiconductor chip and the via, wherein the via is laterally spaced part from the semiconductor chip; the via includes a contact pin, the contact pin including an electrically conductive material; and the contact pin is laterally completely enclosed by the shaped body.
    Type: Grant
    Filed: October 7, 2016
    Date of Patent: August 8, 2017
    Assignee: OSRAM Opto Semiconductors GmbH
    Inventors: Karl Weidner, Ralph Wirth, Axel Kaltenbacher, Walter Wegleiter, Bernd Barchmann, Oliver Wutz, Jan Marfeld
  • Publication number: 20170025581
    Abstract: An optoelectronic semiconductor component includes an optoelectronic semiconductor chip having side areas covered by a shaped body; at least one via including an electrically conductive material; and at least one electrically conductive connection electrically conductively connected to the semiconductor chip and the via, wherein the via is laterally spaced part from the semiconductor chip; the via includes a contact pin, the contact pin including an electrically conductive material; and the contact pin is laterally completely enclosed by the shaped body.
    Type: Application
    Filed: October 7, 2016
    Publication date: January 26, 2017
    Inventors: Karl Weidner, Ralph Wirth, Axel Kaltenbacher, Walter Wegleiter, Bernd Barchmann, Oliver Wutz, Jan Marfeld
  • Patent number: 9500351
    Abstract: In various embodiments, a lighting unit is provided. The lighting unit may include a hollow body made of a plastics material as a substrate, which hollow body has an outer surface and an opposite inner surface, wherein the latter at least partially delimits a hollow body internal volume, a plurality of light emitting diodes, which are arranged on the outer surface of the hollow body, and a conductor track structure, which is electrically conductively connected to the light emitting diodes. The conductor track structure is arranged on the inner surface of the hollow body, and the electrically conductive connection to the light emitting diodes is produced by through-contacts, which are passed through the plastics material.
    Type: Grant
    Filed: February 13, 2015
    Date of Patent: November 22, 2016
    Assignee: OSRAM GMBH
    Inventors: Gertrud Kraeuter, Bernd Barchmann, Andreas Dobner, Florian Boesl
  • Patent number: 9490396
    Abstract: An optoelectronic semiconductor component includes an optoelectronic semiconductor chip having side areas, a surface at a top side of the semiconductor chip, and a surface at a bottom side of the semiconductor chip; a shaped body having a surface at a top side of the shaped body and a surface at an underside of the shaped body; at least one plated-through hole including an electrically conductive material; and an electrically conductive connection electrically conductively connected to the semiconductor chip and the plated-through hole, wherein the side areas of the optoelectronic semiconductor chip are covered by the shaped body, and the surface at the top side and/or the surface at the bottom side of the optoelectronic semiconductor chip are completely free of the shaped body.
    Type: Grant
    Filed: November 3, 2015
    Date of Patent: November 8, 2016
    Assignee: OSRAM Opto Semiconductors GmbH
    Inventors: Karl Weidner, Ralph Wirth, Axel Kaltenbacher, Walter Wegleiter, Bernd Barchmann, Oliver Wutz, Jan Marfeld
  • Patent number: 9419193
    Abstract: An opto-electronic component has a carrier element (3) with a connection region (5). Arranged on the carrier element (3) is a semiconductor chip (7). A contact region (10) is mounted on the surface (8) of the semiconductor chip (7) remote from the carrier element (3). The connection region (5) is electrically conductively connected to the contact region (10) by way of an unsupported conductive structure (13). A method for manufacturing an opto-electronic component is described.
    Type: Grant
    Filed: October 5, 2010
    Date of Patent: August 16, 2016
    Assignees: OSRAM Opto Semiconductors GmbH, Siemens Aktiengesellschaft
    Inventors: Bernd Barchmann, Axel Kaltenbacher, Norbert Stath, Walter Wegleiter, Karl Weidner, Ralph Wirth
  • Patent number: 9331255
    Abstract: A method can be used to produce a housing for an optoelectronic semiconductor device. A reflector part, which has an inner area configured to reflect electromagnetic radiation, is encased in places with a housing material using an injection molding method. The inner area of the reflector part remains free of the housing material at least in places. The reflector part is formed with a first plastic material and the housing material is formed with a second plastic material that is different than the first plastic material. The first plastic material and the second plastic material differ from one another with regard to at least thermal stability or resistance to electromagnetic radiation.
    Type: Grant
    Filed: November 17, 2010
    Date of Patent: May 3, 2016
    Assignee: OSRAM Opto Semiconductors GmbH
    Inventors: Gertrud Kräuter, Bernd Barchmann