Patents by Inventor Bernd Edler

Bernd Edler has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20150066489
    Abstract: An audio encoder has a window function controller, a windower, a time warper with a final quality check functionality, a time/frequency converter, a TNS stage or a quantizer encoder, the window function controller, the time warper, the TNS stage or an additional noise filling analyzer are controlled by signal analysis results obtained by a time warp analyzer or a signal classifier. Furthermore, a decoder applies a noise filling operation using a manipulated noise filling estimate depending on a harmonic or speech characteristic of the audio signal.
    Type: Application
    Filed: November 11, 2014
    Publication date: March 5, 2015
    Inventors: Stefan BAYER, Sascha DISCH, Ralf GEIGER, Guillaume FUCHS, Max NEUENDORF, Gerald SCHULLER, Bernd EDLER
  • Publication number: 20150066492
    Abstract: An audio encoder has a window function controller, a windower, a time warper with a final quality check functionality, a time/frequency converter, a TNS stage or a quantizer encoder, the window function controller, the time warper, the TNS stage or an additional noise filling analyzer are controlled by signal analysis results obtained by a time warp analyzer or a signal classifier. Furthermore, a decoder applies a noise filling operation using a manipulated noise filling estimate depending on a harmonic or speech characteristic of the audio signal.
    Type: Application
    Filed: November 11, 2014
    Publication date: March 5, 2015
    Inventors: Stefan BAYER, Sascha DISCH, Ralf GEIGER, Guillaume FUCHS, Max NEUENDORF, Gerald SCHULLER, Bernd EDLER
  • Publication number: 20150066493
    Abstract: An audio encoder has a window function controller, a windower, a time warper with a final quality check functionality, a time/frequency converter, a TNS stage or a quantizer encoder, the window function controller, the time warper, the TNS stage or an additional noise filling analyzer are controlled by signal analysis results obtained by a time warp analyzer or a signal classifier. Furthermore, a decoder applies a noise filling operation using a manipulated noise filling estimate depending on a harmonic or speech characteristic of the audio signal.
    Type: Application
    Filed: November 11, 2014
    Publication date: March 5, 2015
    Inventors: Stefan BAYER, Sascha DISCH, Ralf GEIGER, Guillaume FUCHS, Max NEUENDORF, Gerald SCHULLER, Bernd EDLER
  • Publication number: 20150066491
    Abstract: An audio encoder has a window function controller, a windower, a time warper with a final quality check functionality, a time/frequency converter, a TNS stage or a quantizer encoder, the window function controller, the time warper, the TNS stage or an additional noise filling analyzer are controlled by signal analysis results obtained by a time warp analyzer or a signal classifier. Furthermore, a decoder applies a noise filling operation using a manipulated noise filling estimate depending on a harmonic or speech characteristic of the audio signal.
    Type: Application
    Filed: November 11, 2014
    Publication date: March 5, 2015
    Inventors: Stefan BAYER, Sascha DISCH, Ralf GEIGER, Guillaume FUCHS, Max NEUENDORF, Gerald SCHULLER, Bernd EDLER
  • Publication number: 20150066490
    Abstract: An audio encoder has a window function controller, a windower, a time warper with a final quality check functionality, a time/frequency converter, a TNS stage or a quantizer encoder, the window function controller, the time warper, the TNS stage or an additional noise filling analyzer are controlled by signal analysis results obtained by a time warp analyzer or a signal classifier. Furthermore, a decoder applies a noise filling operation using a manipulated noise filling estimate depending on a harmonic or speech characteristic of the audio signal.
    Type: Application
    Filed: November 11, 2014
    Publication date: March 5, 2015
    Inventors: Stefan BAYER, Sascha DISCH, Ralf GEIGER, Guillaume FUCHS, Max NEUENDORF, Gerald SCHULLER, Bernd EDLER
  • Publication number: 20150066488
    Abstract: An audio encoder has a window function controller, a windower, a time warper with a final quality check functionality, a time/frequency converter, a TNS stage or a quantizer encoder, the window function controller, the time warper, the TNS stage or an additional noise filling analyzer are controlled by signal analysis results obtained by a time warp analyzer or a signal classifier. Furthermore, a decoder applies a noise filling operation using a manipulated noise filling estimate depending on a harmonic or speech characteristic of the audio signal.
    Type: Application
    Filed: November 11, 2014
    Publication date: March 5, 2015
    Inventors: Stefan BAYER, Sascha DISCH, Ralf GEIGER, Guillaume FUCHS, Max NEUENDORF, Gerald SCHULLER, Bernd EDLER
  • Publication number: 20140372131
    Abstract: A decoder for decoding an encoded audio signal to obtain a phase-adjusted audio signal is provided. The decoder has a decoding unit and a phase adjustment unit. The decoding unit is adapted to decode the encoded audio signal to obtain a decoded audio signal. The phase adjustment unit is adapted to adjust the decoded audio signal to obtain the phase-adjusted audio signal. The phase adjustment unit is configured to receive control information depending on a vertical phase coherence of the encoded audio signal. Moreover, the phase adjustment unit is adapted to adjust the decoded audio signal based on the control information.
    Type: Application
    Filed: August 27, 2014
    Publication date: December 18, 2014
    Inventors: Sascha DISCH, Juergen HERRE, Bernd EDLER, Frederik NAGEL
  • Publication number: 20140297293
    Abstract: An audio encoding apparatus includes an encoder for encoding a time segment of an input audio signal to be encoded to obtain a corresponding encoded signal segment. The audio encoding apparatus further includes a decoder for decoding the encoded signal segment to obtain a re-decoded signal segment. A clipping detector is provided for analyzing the re-decoded signal segment with respect to at least one of an actual signal clipping or an perceptible signal clipping and for generating a corresponding clipping alert. The encoder is further configured to again encode the time segment of the audio signal with at least one modified encoding parameter resulting in a reduced clipping probability in response to the clipping alert.
    Type: Application
    Filed: June 13, 2014
    Publication date: October 2, 2014
    Inventors: Albert HEUBERGER, Bernd EDLER, Nikolaus RETTELBACH, Stefan GEYERSBERGER, Johannes HILPERT
  • Patent number: 8775193
    Abstract: An embodiment of an apparatus for generating audio subband values in audio subband channels has an analysis windower for windowing a frame of time-domain audio input samples being in a time sequence extending from an early sample to a later sample using an analysis window function having a sequence of window coefficients to obtain windowed samples. The analysis window function has a first group of window coefficients and a second group of window coefficients. The first group of window coefficients is used for windowing later time-domain samples and the second group of window coefficients is used for windowing an earlier time-domain samples. The apparatus further has a calculator for calculating the audio subband values using the windowed samples.
    Type: Grant
    Filed: January 15, 2013
    Date of Patent: July 8, 2014
    Assignee: Fraunhofer-Gesellschaft zur Foerderung der Angewandten Forschung E.V.
    Inventors: Markus Schnell, Manfred Lutzky, Markus Lohwasser, Markus Schmidt, Marc Gayer, Michael Mellar, Bernd Edler, Markus Multrus, Gerald Schuller, Ralf Geiger, Bernhard Grill
  • Patent number: 8700388
    Abstract: A processed representation of an audio signal having a sequence of frames is generated by sampling the audio signal within first and second frames of the sequence of frames, the second frame following the first frame, the sampling using information on a pitch contour of the first and second frames to derive a first sampled representation. The audio signal is sampled within the second and third frames, the third frame following the second frame in the sequence of frames. The sampling uses the information on the pitch contour of the second frame and information on a pitch contour of the third frame to derive a second sampled representation. A first scaling window is derived for the first sampled representation, and a second scaling window is derived for the second sampled representation, the scaling windows depending on the samplings applied to derive the first sampled representations or the second sampled representation.
    Type: Grant
    Filed: March 23, 2009
    Date of Patent: April 15, 2014
    Assignee: Fraunhofer-Gesellschaft zur Foerderung der angewandten Forschung e.V.
    Inventors: Bernd Edler, Sascha Disch, Ralf Geiger, Stefan Bayer, Ulrich Kraemer, Guillaume Fuchs, Max Neuendorf, Markus Multrus, Gerald Schuller, Harald Popp
  • Patent number: 8655670
    Abstract: An encoder, based on a combination of two audio channels, obtains a first combination signal as a mid-signal and a residual signal derivable using a predicted side signal derived from the mid signal. The first combination signal and the prediction residual signal are encoded and written into a data stream together with the prediction information. A decoder generates decoded first and second channel signals using the prediction residual signal, the first combination signal and the prediction information. A real-to-imaginary transform may be applied for estimating the imaginary part of the spectrum of the first combination signal. For calculating the prediction signal used in the derivation of the prediction residual signal, the real-valued first combination signal is multiplied by a real portion of the complex prediction information and the estimated imaginary part of the first combination signal is multiplied by an imaginary portion of the complex prediction information.
    Type: Grant
    Filed: October 5, 2012
    Date of Patent: February 18, 2014
    Assignees: Fraunhofer-Gesellschaft zur Foerderung der Angewandten Forschung E.V., Dolby International AB
    Inventors: Heiko Purnhagen, Pontus Carlsson, Lars Villemoes, Julien Robillard, Matthias Neusinger, Christian Helmrich, Johannes Hilpert, Nikolaus Rettelbach, Sascha Disch, Bernd Edler
  • Patent number: 8452605
    Abstract: An embodiment of an apparatus for generating audio subband values in audio subband channels has an analysis windower for windowing a frame of time-domain audio input samples being in a time sequence extending from an early sample to a later sample using an analysis window function having a sequence of window coefficients to obtain windowed samples. The analysis window function has a first group of window coefficients and a second group of window coefficients. The first group of window coefficients is used for windowing later time-domain samples and the second group of window coefficients is used for windowing an earlier time-domain samples. The apparatus further has a calculator for calculating the audio subband values using the windowed samples.
    Type: Grant
    Filed: October 23, 2007
    Date of Patent: May 28, 2013
    Assignee: Fraunhofer-Gesellschaft zur Foerderung der Angewandten Forschung E.V.
    Inventors: Markus Schnell, Manfred Lutzky, Markus Lohwasser, Markus Schmidt, Marc Gayer, Michael Mellar, Bernd Edler, Markus Multrus, Gerald Schuller, Ralf Geiger, Bernhard Grill
  • Publication number: 20130117015
    Abstract: An audio signal decoder includes a context-based spectral value decoder configured to decode a codeword describing one or more spectral values or at least a portion of a number representation thereof in dependence on a context state. The audio signal decoder also includes a context state determinator configured to determine a current context state in dependence on one or more previously decoded spectral values and a time warping frequency-domain-to-time-domain converter configured to provide a time-warped time-domain representation of a given audio frame on the basis of a set of decoded spectral values provided by the context-based spectral value decoder and in dependence on the time warp information. The context-state determinator is configured to adapt the determination of the context state to a change of a fundamental frequency between subsequent audio frames. An audio signal encoder applies a comparable concept.
    Type: Application
    Filed: September 10, 2012
    Publication date: May 9, 2013
    Inventors: Stefan BAYER, Tom BAECKSTROEM, Ralf GEIGER, Bernd EDLER, Sascha DISCH, Lars VILLEMOES
  • Patent number: 8438015
    Abstract: An embodiment of an apparatus for generating audio subband values in audio subband channels includes an analysis windower for windowing a frame of time-domain audio input samples being in a time sequence extending from an early sample to a later sample using an analysis window function including a sequence of window coefficients to obtain windowed samples. The analysis window function includes a first number of window coefficients derived from a larger window function including a sequence of a larger second number of window coefficients, wherein the window coefficients of the window function are derived by an interpolation of window coefficients of the larger window function. The apparatus further includes a calculator for calculating the audio subband values using the windowed samples.
    Type: Grant
    Filed: October 23, 2007
    Date of Patent: May 7, 2013
    Assignee: Fraunhofer-Gesellschaft zur Foerderung der angewandten Forschung e.V.
    Inventors: Markus Schnell, Manfred Lutzky, Markus Lohwasser, Markus Schmidt, Marc Gayer, Michael Mellar, Bernd Edler, Markus Multrus, Gerald Schuller, Ralf Geiger, Bernhard Grill
  • Patent number: 8411731
    Abstract: In order to process a subband signal of a plurality of real subband signals which are a representation of a real discrete-time signal generated by an analysis filter bank, a weighter for weighting a subband signal by a weighting factor determined for the subband signal is provided to obtain a weighted subband signal. In addition, a correction term is calculated by a correction term determiner, the correction term determiner being implemented to calculate the correction term using at least one other subband signal and using another weighting factor provided for the other subband signal, the two weighting factors differing. The correction term is then combined with the weighted subband signal to obtain a corrected subband signal, resulting in reduced aliasing, even if subband signals are weighted to a different extent.
    Type: Grant
    Filed: June 26, 2007
    Date of Patent: April 2, 2013
    Assignee: Fraunhofer-Gesellschaft zur Foerderung der Angewandten Forschung E.V.
    Inventors: Bernd Edler, Harald Popp
  • Publication number: 20130073296
    Abstract: An audio signal decoder configured to provide a decoded audio signal representation on the basis of an encoded audio signal representation including a sampling frequency information, an encoded time warp information and an encoded spectrum representation includes a time warp calculator and a warp decoder. The time warp calculator is configured to adapt a mapping rule for mapping codewords of the encoded time warp information onto decoded time warp values describing the decoded time warp information in dependence on the sampling frequency information. The warp decoder is configured to provide the decoded audio signal representation on the basis of the encoded spectrum representation and in dependence on the decoded time warp information.
    Type: Application
    Filed: September 6, 2012
    Publication date: March 21, 2013
    Inventors: Stefan Bayer, Tom Baeckstroem, Ralf Reiger, Bernd Edler, Sascha Disch, Lars Villemoes
  • Patent number: 8321207
    Abstract: For postprocessing spectral values which are based on a first transformation algorithm for converting the audio signal into a spectral representation, first a sequence of blocks of the spectral values representing a sequence of blocks of samples of the audio signal are provided.
    Type: Grant
    Filed: September 28, 2007
    Date of Patent: November 27, 2012
    Assignee: Fraunhofer-Gesellschaft zur Foerderung der Angewandten Forschung e.V.
    Inventors: Bernd Edler, Ralf Geiger, Christian Ertel, Johannes Hilpert, Harald Popp
  • Patent number: 8155954
    Abstract: A filter bank device for generating a complex spectral representation of a discrete-time signal includes a generator for generating a block-wise real spectral representation, which, for example, implements an MDCT, to obtain temporally successive blocks of real spectral coefficients. The output values of this spectral conversion device are fed to a post-processor for post-processing the block-wise real spectral representation to obtain an approximated complex spectral representation having successive blocks, each block having a set of complex approximated spectral coefficients, wherein a complex approximated spectral coefficient can be represented by a first partial spectral coefficient and by a second partial spectral coefficient, wherein at least one of the first and second partial spectral coefficients is determined by combining at least two real spectral coefficients.
    Type: Grant
    Filed: March 4, 2010
    Date of Patent: April 10, 2012
    Assignee: Fraunhofer-Gesellschaft zur Foerderung der angewandten Forschung e.V.
    Inventors: Bernd Edler, Stefan Geyersberger
  • Publication number: 20110178795
    Abstract: An audio encoder has a window function controller, a windower, a time warper with a final quality check functionality, a time/frequency converter, a TNS stage or a quantizer encoder, the window function controller, the time warper, the TNS stage or an additional noise filling analyzer are controlled by signal analysis results obtained by a time warp analyzer or a signal classifier. Furthermore, a decoder applies a noise filling operation using a manipulated noise filling estimate depending on a harmonic or speech characteristic of the audio signal.
    Type: Application
    Filed: January 11, 2011
    Publication date: July 21, 2011
    Inventors: Stefan Bayer, Sascha Disch, Ralf Geiger, Guillaume Fuchs, Max Neuendorf, Gerald Schuller, Bernd Edler
  • Publication number: 20110161088
    Abstract: A time warp contour calculator for use in an audio signal decoder is configured to receive an encoded warp ratio information, to derive a sequence of warp ratio values from the encoded warp ratio information, and to obtain warp contour node values starting from a time warp contour start value. Ratios between the time warp contour node values and the time warp contour starting value are determined by the warp ratio values. The time warp contour calculator is configured to compute a time warp contour node value of a given time warp contour node, on the basis of a product-formation having a ratio between the time warp contour node value of the intermediate time warp contour node and the time warp contour starting value and a ratio between the time warp contour node value of the given time warp contour node and the time-warp contour node value of the intermediate time warp contour node as factors.
    Type: Application
    Filed: July 1, 2009
    Publication date: June 30, 2011
    Inventors: Stefan Bayer, Sascha Disch, Ralf Geiger, Guillaume Fuchs, Max Neuendorf, Derald Schuller, Bernd Edler