Patents by Inventor Bernd Huebner

Bernd Huebner has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11086088
    Abstract: An optoelectronic assembly may include a photonic integrated circuit (PIC) with a top surface and a laser with a top surface and a bottom surface. The optoelectronic assembly may also include a housing configured to cooperate with the PIC to one or both of house and support one or more components. The housing may include a PIC mount including a first surface to interface with the top surface of the PIC, and a laser mount including a second surface to interface with the top or bottom surface of the laser. The first surface and the second surface may be parallel to each other.
    Type: Grant
    Filed: August 29, 2019
    Date of Patent: August 10, 2021
    Assignee: II-VI DELAWARE, INC.
    Inventors: Bernd Huebner, Tsurugi Sudo, Shiyun Lin
  • Patent number: 10845553
    Abstract: Multichannel RF Feedthroughs. In some examples, a multichannel RF feedthrough includes an internal portion and an external portion. The internal portion includes a top surface on which first and second sets of traces are formed. Each set of traces is configured as an electrical communication channel to carry electrical data signals. The external portion includes a bottom surface on which the first set of traces is formed and a top surface on which the second set of traces is formed. A set of vias connects the first set of traces between the top surface of the internal portion and the bottom surface of the external portion.
    Type: Grant
    Filed: December 29, 2016
    Date of Patent: November 24, 2020
    Assignee: II-VI Delaware Inc.
    Inventors: Yan yang Zhao, Bernd Huebner, Tengda Du, Yuheng Lee
  • Patent number: 10826267
    Abstract: A system includes a surface coupled edge emitting laser that includes a core waveguide, a fan out region optically coupled to the core waveguide in a same layer of the surface coupled edge emitting laser as the core waveguide; and a first surface grating formed in the fan out region; and a photonic integrated circuit (PIC) that includes an optical waveguide and a second surface grating formed in an upper layer of the PIC, wherein the second surface grating is in optical alignment with the first surface grating.
    Type: Grant
    Filed: March 26, 2019
    Date of Patent: November 3, 2020
    Assignee: II-VI Delaware Inc.
    Inventors: Daniel Mahgerefteh, Jianxiao Chen, Bernd Huebner, Xiaojie Xu, Yasuhiro Matsui, David Adams, Theā€² Linh Nguyen
  • Patent number: 10812181
    Abstract: An embodiment includes an optical transmitter. An optical transmitter may include a primary laser for transmitting a primary optical signal and a backup laser for transmitting a backup optical signal. The optical transmitter may further include a photonic integrated circuit (PIC). The PIC may include at least one input port configured to receive the primary optical signal from the primary laser and the backup optical signal from the backup laser. The PIC may also include at least one output port configured to receive each of the primary optical signal and the backup optical signal. The optical transmitter may be configured to activate the backup laser upon determining that the primary laser has failed or is failing.
    Type: Grant
    Filed: November 16, 2018
    Date of Patent: October 20, 2020
    Assignee: II-VI Delaware Inc.
    Inventors: Xiaojie Xu, Bernd Huebner, Rafik Ward, Martin Huibert Kwakernaak
  • Patent number: 10802214
    Abstract: In an example, a photonic system and method include a photonic integrated circuit (PIC) including a silicon (Si) waveguide and a first silicon nitride (SiN) waveguide. The system also includes an interposer including a second SiN waveguide including vertical tapers on the second SiN waveguide by increasing a thickness of the second SiN waveguide in a direction toward the first SiN waveguide to allow an adiabatic optical mode transfer and decreasing the thickness of the second SiN waveguide in a direction away from the first SiN waveguide to inhibit the optical mode transfer.
    Type: Grant
    Filed: December 6, 2018
    Date of Patent: October 13, 2020
    Assignee: II-VI Delaware Inc.
    Inventors: Daniel Mahgerefteh, Jin-Hyoung Lee, Bernd Huebner
  • Publication number: 20200162153
    Abstract: An embodiment includes an optical transmitter. An optical transmitter may include a primary laser for transmitting a primary optical signal and a backup laser for transmitting a backup optical signal. The optical transmitter may further include a photonic integrated circuit (PIC). The PIC may include at least one input port configured to receive the primary optical signal from the primary laser and the backup optical signal from the backup laser. The PIC may also include at least one output port configured to receive each of the primary optical signal and the backup optical signal. The optical transmitter may be configured to activate the backup laser upon determining that the primary laser has failed or is failing.
    Type: Application
    Filed: November 16, 2018
    Publication date: May 21, 2020
    Inventors: Xiaojie Xu, Bernd Huebner, Rafik Ward, Martin Huibert Kwakernaak
  • Patent number: 10656333
    Abstract: In an example, a photonic system includes a Si PIC with a Si substrate, a SiO2 box formed on the Si substrate, a first layer, and a second layer. The first layer is formed above the SiO2 box and includes a SiN waveguide with a coupler portion at a first end and a tapered end opposite the first end. The second layer is formed above the SiO2 box and vertically displaced above or below the first layer. The second layer includes a Si waveguide with a tapered end aligned in two orthogonal directions with the coupler portion of the SiN waveguide such that the tapered end of the Si waveguide overlaps in the two orthogonal directions and is parallel to the coupler portion of the SiN waveguide. The tapered end of the SiN waveguide is configured to be adiabatically coupled to a coupler portion of an interposer waveguide.
    Type: Grant
    Filed: April 16, 2019
    Date of Patent: May 19, 2020
    Assignee: II-VI Delaware Inc.
    Inventors: Daniel Mahgerefteh, Bryan Park, Jianxiao Chen, Xiaojie Xu, Gilles P. Denoyer, Bernd Huebner
  • Publication number: 20200073065
    Abstract: An optoelectronic assembly may include a photonic integrated circuit (PIC) with a top surface and a laser with a top surface and a bottom surface. The optoelectronic assembly may also include a housing configured to cooperate with the PIC to one or both of house and support one or more components. The housing may include a PIC mount including a first surface to interface with the top surface of the PIC, and a laser mount including a second surface to interface with the top or bottom surface of the laser. The first surface and the second surface may be parallel to each other.
    Type: Application
    Filed: August 29, 2019
    Publication date: March 5, 2020
    Inventors: Bernd Huebner, Tsurugi Sudo, Shiyun Lin
  • Publication number: 20190243066
    Abstract: In an example, a photonic system includes a Si PIC with a Si substrate, a SiO2 box formed on the Si substrate, a first layer, and a second layer. The first layer is formed above the SiO2 box and includes a SiN waveguide with a coupler portion at a first end and a tapered end opposite the first end. The second layer is formed above the SiO2 box and vertically displaced above or below the first layer. The second layer includes a Si waveguide with a tapered end aligned in two orthogonal directions with the coupler portion of the SiN waveguide such that the tapered end of the Si waveguide overlaps in the two orthogonal directions and is parallel to the coupler portion of the SiN waveguide. The tapered end of the SiN waveguide is configured to be adiabatically coupled to a coupler portion of an interposer waveguide.
    Type: Application
    Filed: April 16, 2019
    Publication date: August 8, 2019
    Inventors: Daniel Mahgerefteh, Bryan Park, Jianxiao Chen, Xiaojie Xu, Gilles P. Denoyer, Bernd Huebner
  • Publication number: 20190221994
    Abstract: A system includes a surface coupled edge emitting laser that includes a core waveguide, a fan out region optically coupled to the core waveguide in a same layer of the surface coupled edge emitting laser as the core waveguide; and a first surface grating formed in the fan out region; and a photonic integrated circuit (PIC) that includes an optical waveguide and a second surface grating formed in an upper layer of the PIC, wherein the second surface grating is in optical alignment with the first surface grating.
    Type: Application
    Filed: March 26, 2019
    Publication date: July 18, 2019
    Inventors: Daniel Mahgerefteh, Jianxiao Chen, Bernd Huebner, Xiaojie Xu, Yasuhiro Matsui, David Adams, The' Linh Nguyen
  • Publication number: 20190170941
    Abstract: In an example, a photonic system and method include a photonic integrated circuit (PIC) including a silicon (Si) waveguide and a first silicon nitride (SiN) waveguide. The system also includes an interposer including a second SiN waveguide including vertical tapers on the second SiN waveguide by increasing a thickness of the second SiN waveguide in a direction toward the first SiN waveguide to allow an adiabatic optical mode transfer and decreasing the thickness of the second SiN waveguide in a direction away from the first SiN waveguide to inhibit the optical mode transfer.
    Type: Application
    Filed: December 6, 2018
    Publication date: June 6, 2019
    Inventors: Daniel Mahgerefteh, Jin-Hyoung Lee, Bernd Huebner
  • Patent number: 10261251
    Abstract: In an example, a photonic system includes a Si PIC with a Si substrate, a SiO2 box formed on the Si substrate, a first layer, and a second layer. The first layer is formed above the SiO2 box and includes a SiN waveguide with a coupler portion at a first end and a tapered end opposite the first end. The second layer is formed above the SiO2 box and vertically displaced above or below the first layer. The second layer includes a Si waveguide with a tapered end aligned in two orthogonal directions with the coupler portion of the SiN waveguide such that the tapered end of the Si waveguide overlaps in the two orthogonal directions and is parallel to the coupler portion of the SiN waveguide. The tapered end of the SiN waveguide is configured to be adiabatically coupled to a coupler portion of an interposer waveguide.
    Type: Grant
    Filed: August 31, 2017
    Date of Patent: April 16, 2019
    Assignee: FINISAR CORPORATION
    Inventors: Daniel Mahgerefteh, Bryan Park, Jianxiao Chen, Xiaojie Xu, Gilles P. Denoyer, Bernd Huebner
  • Patent number: 10243322
    Abstract: A system includes a surface coupled edge emitting laser that includes a core waveguide, a fan out region optically coupled to the core waveguide in a same layer of the surface coupled edge emitting laser as the core waveguide; and a first surface grating formed in the fan out region; and a photonic integrated circuit (PIC) that includes an optical waveguide and a second surface grating formed in an upper layer of the PIC, wherein the second surface grating is in optical alignment with the first surface grating.
    Type: Grant
    Filed: December 19, 2016
    Date of Patent: March 26, 2019
    Assignee: FINISAR CORPORATION
    Inventors: Daniel Mahgerefteh, Jianxiao Chen, Bernd Huebner, Xiaojie Xu, Yasuhiro Matsui, David Adams, The' Linh Nguyen
  • Patent number: 10067303
    Abstract: A transceiver system may include a laser and a silicon optical grating. The laser may be configured to emit a laser beam at an output of the laser. The laser beam may have a non-circular elliptical mode profile. The silicon grating may be configured to exhibit a mode profile having a shape corresponding to the non-circular elliptical mode profile of the laser beam.
    Type: Grant
    Filed: January 17, 2017
    Date of Patent: September 4, 2018
    Assignee: FINISAR CORPORATION
    Inventors: Jianxiao Chen, Xiaojie Xu, Bernd Huebner
  • Patent number: 9874691
    Abstract: In an example, a coupled system includes a first waveguide, at least one second waveguide, and an interposer. The first waveguide has a silicon (Si) core having first refractive index n1 and a tapered end. The at least one second waveguide each has a silicon nitride (SiN) core having a second refractive index n2. The interposer includes a third waveguide having a third refractive index n3 and a coupler portion, where n1>n2>n3. The tapered end of the first waveguide is adiabatically coupled to a coupler portion of one of the at least one second waveguide. A tapered end of one of the at least one second waveguide is adiabatically coupled to the coupler portion of the third waveguide of the interposer. The third waveguide of the interposer has an optical mode size that is similar to the mode size of a standard single mode optical fiber.
    Type: Grant
    Filed: July 12, 2016
    Date of Patent: January 23, 2018
    Assignee: Finisar Corporation
    Inventors: Daniel Mahgerefteh, Bryan Park, Jianxiao Chen, Xiaojie Xu, Gilles P. Denoyer, Bernd Huebner
  • Publication number: 20170363808
    Abstract: In an example, a photonic system includes a Si PIC with a Si substrate, a SiO2 box formed on the Si substrate, a first layer, and a second layer. The first layer is formed above the SiO2 box and includes a SiN waveguide with a coupler portion at a first end and a tapered end opposite the first end. The second layer is formed above the SiO2 box and vertically displaced above or below the first layer. The second layer includes a Si waveguide with a tapered end aligned in two orthogonal directions with the coupler portion of the SiN waveguide such that the tapered end of the Si waveguide overlaps in the two orthogonal directions and is parallel to the coupler portion of the SiN waveguide. The tapered end of the SiN waveguide is configured to be adiabatically coupled to a coupler portion of an interposer waveguide.
    Type: Application
    Filed: August 31, 2017
    Publication date: December 21, 2017
    Inventors: Daniel Mahgerefteh, Bryan Park, Jianxiao Chen, Xiaojie Xu, Gilles P. Denoyer, Bernd Huebner
  • Publication number: 20170179680
    Abstract: A system includes a surface coupled edge emitting laser that includes a core waveguide, a fan out region optically coupled to the core waveguide in a same layer of the surface coupled edge emitting laser as the core waveguide; and a first surface grating formed in the fan out region; and a photonic integrated circuit (PIC) that includes an optical waveguide and a second surface grating formed in an upper layer of the PIC, wherein the second surface grating is in optical alignment with the first surface grating.
    Type: Application
    Filed: December 19, 2016
    Publication date: June 22, 2017
    Inventors: Daniel Mahgerefteh, Jianxiao Chen, Bernd Huebner, Xiaojie Xu, Yasuhiro Matsui, David Adams, The' Linh Nguyen
  • Publication number: 20170176700
    Abstract: Multichannel RF Feedthroughs. In some examples, a multichannel RF feedthrough includes an internal portion and an external portion. The internal portion includes a top surface on which first and second sets of traces are formed. Each set of traces is configured as an electrical communication channel to carry electrical data signals. The external portion includes a bottom surface on which the first set of traces is formed and a top surface on which the second set of traces is formed. A set of vias connects the first set of traces between the top surface of the internal portion and the bottom surface of the external portion.
    Type: Application
    Filed: December 29, 2016
    Publication date: June 22, 2017
    Inventors: Yan yang Zhao, Bernd Huebner, Tengda Du, Yuheng Lee
  • Publication number: 20170052317
    Abstract: In an example, a coupled system includes a first waveguide, at least one second waveguide, and an interposer. The first waveguide has a silicon (Si) core having first refractive index n1 and a tapered end. The at least one second waveguide each has a silicon nitride (SiN) core having a second refractive index n2. The interposer includes a third waveguide having a third refractive index n3 and a coupler portion, where n1>n2>n3. The tapered end of the first waveguide is adiabatically coupled to a coupler portion of one of the at least one second waveguide. A tapered end of one of the at least one second waveguide is adiabatically coupled to the coupler portion of the third waveguide of the interposer. The third waveguide of the interposer has an optical mode size that is similar to the mode size of a standard single mode optical fiber.
    Type: Application
    Filed: July 12, 2016
    Publication date: February 23, 2017
    Inventors: Daniel Mahgerefteh, Bryan Park, Jianxiao Chen, Xiaojie Xu, Gilles P. Denoyer, Bernd Huebner
  • Patent number: 9538637
    Abstract: Multichannel RF Feedthroughs. In some examples, a multichannel RF feedthrough includes an internal portion and an external portion. The internal portion includes a top surface on which first and second sets of traces are formed. Each set of traces is configured as an electrical communication channel to carry electrical data signals. The external portion includes a bottom surface on which the first set of traces is formed and a top surface on which the second set of traces is formed. A set of vias connects the first set of traces between the top surface of the internal portion and the bottom surface of the external portion.
    Type: Grant
    Filed: June 26, 2012
    Date of Patent: January 3, 2017
    Assignee: FINISAR CORPORATION
    Inventors: Yan yang Zhao, Bernd Huebner, Tengda Du, Yuheng Lee