Patents by Inventor Bernd Keiper

Bernd Keiper has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12007096
    Abstract: An illumination system for a medical technology therapy and/or diagnosis system is provided. The system includes a light source, an optical waveguide, and an optical element in the form of a diffuser element. The optical waveguide has a first end that is connectable or assignable to the light source and the diffuser element is arranged at a second end of the optical waveguide so that light from the optical waveguide is injected into the optical element. The optical element has a lateral surface covered by a reflector layer at least in a section thereof. The reflector layer includes a mirror layer. The optical element has a light-reflecting area covered by the reflector layer and a light-transmissive area that is free of the reflector layer. Thus, light injected into the optical element is reflected on the light-reflecting area and emitted from the light-transmissive area.
    Type: Grant
    Filed: June 15, 2022
    Date of Patent: June 11, 2024
    Assignee: SCHOTT AG
    Inventors: Bernd Schultheis, Christian Henn, Tobias Klink, Oliver Keiper, Hubertus Russert
  • Patent number: 11984238
    Abstract: An optoelectrical guide/conductor system is provided that includes an optoelectrical guide/conductor arrangement and an at least regionally electrically conductive adapter sleeve. The arrangement has an optical waveguide with an outer, organic sheath layer and a conductive layer. The conductive layer is a single layer or a sequence of layers, which is directly or indirectly on the outer sheath layer. The sleeve mechanically embraces the arrangement and electrically contacts the conductive layer such that the adapter sleeve is insertable into a connection mount, arranged e.g. on a handpiece, for transmitting optical and/or electrical signals through the conductive layer.
    Type: Grant
    Filed: July 27, 2020
    Date of Patent: May 14, 2024
    Assignee: SCHOTT AG
    Inventors: Bernd Schultheis, Oliver Keiper, Christian Henn
  • Patent number: 8115792
    Abstract: In a method for producing a permanent mark in an optical element which consists essentially of a material that is transparent in the visible spectral region, a marking region of the optical element is irradiated with laser radiation in order to generate local, near-surface material changes in such a way that a mark of prescribed shape and size is generated. The laser radiation has an operating wavelength ? from the wavelength region between 1.1 ?m and 9.2 ?m. A thulium-doped fiber laser is preferably used as laser radiation source. The operating wavelength is selected in dependence from the material of the optical element such that the material exhibits a partial absorption with a transmittance between 60% and 98%. The method can be used, in particular, to provide spectacle lenses, contact lenses or intraocular lenses with marks.
    Type: Grant
    Filed: October 27, 2009
    Date of Patent: February 14, 2012
    Assignee: 3D-Micromac AG
    Inventors: Tino Petsch, Bernd Keiper, Sven Albert, Thomas Hoeche
  • Publication number: 20100141729
    Abstract: In a method for producing a permanent mark in an optical element which consists essentially of a material that is transparent in the visible spectral region, a marking region of the optical element is irradiated with laser radiation in order to generate local, near-surface material changes in such a way that a mark of prescribed shape and size is generated. The laser radiation has an operating wavelength ? from the wavelength region between 1.1 ?m and 9.2 ?m. A thulium-doped fibre laser is preferably used as laser radiation source. The operating wavelength is selected in dependence from the material of the optical element such that the material exhibits a partial absorption with a transmittance between 60% and 98%. The method can be used, in particular, to provide spectacle lenses, contact lenses or intraocular lenses with marks.
    Type: Application
    Filed: October 27, 2009
    Publication date: June 10, 2010
    Applicant: 3D-Micromac AG
    Inventors: Tino Petsch, Bernd Keiper, Sven Albert, Thomas Hoeche
  • Publication number: 20070145629
    Abstract: The invention relates to a pole terminal for producing an electrical connection. Said pole terminal comprises a metallic conductive body which is surrounded by an insulating body which can be fixed to the housing of an electrical appliance, and on which a tensioning nut can be screwed, said tensioning nut clamping the electrical conductor to be connected against the conductive body, establishing an electrical contact. The aim of the invention is to improve one such pole terminal in such a way that the conductive body can be produced from a material which is highly conductive, such as silver or copper. To this end, the conductive body is produced from a material exhibiting higher conductivity, by means of noncutting deformation, and is connected to the surrounding insulating body to form a composite body. Preferably, the conductive body is embodied as a stamped part which is machined by bending strain.
    Type: Application
    Filed: February 26, 2004
    Publication date: June 28, 2007
    Inventors: Robby Ebert, Horst Exner, Lars Hartwig, Bernd Keiper, Sascha Klotzer, Peter Regenfuss