Patents by Inventor Bernd Menser

Bernd Menser has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9615808
    Abstract: A method and system for processing a radiography image derived from an X-ray radiation passing through an object. The method includes acts of estimating, based on the radiography image, a scatter signal present in said radiography image; calculating, based on the estimated scatter signal, a scatter removal signal indicative of a scattered radiation removable from the X-ray radiation passing through the object by a reference anti-scatter device; and correcting the radiography image based on the scatter removal signal.
    Type: Grant
    Filed: November 26, 2014
    Date of Patent: April 11, 2017
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Detlef Mentrup, Sascha Andreas Jockel, Hanns-Ingo Maack, Bernd Menser
  • Patent number: 9615812
    Abstract: Calibration methods and related calibration controllers (CC) for calibrating imaging apparatuses (102) such as a 3D computed tomography imager or a 2D x-ray imager. The imaging apparatuses (102) are equipped with a dynamic beam shaper (RF). The dynamic beam shaper (RF) allows adapting the energy profile of a radiation beam (PR) used in the imaging apparatuses (102) to a shape of an object (PAT) to be imaged. A plurality of gain images are acquired in dependence on a shape of the object and the view along which the gain images are acquired or a target gain image is synthesized from a plurality of basis gain images (BGI).
    Type: Grant
    Filed: June 19, 2014
    Date of Patent: April 11, 2017
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Christoph Herrmann, Bernd Menser
  • Publication number: 20160113617
    Abstract: Calibration methods and related calibration controllers (CC) for calibrating imaging apparatuses (102) such as a 3D computed tomography imager or a 2D x-ray imager. The imaging apparatuses (102) are equipped with a dynamic beam shaper (RF). The dynamic beam shaper (RF) allows adapting the energy profile of a radiation beam (PR) used in the imaging apparatuses (102) to a shape of an object (PAT) to be imaged. A plurality of gain images are acquired in dependence on a shape of the object and the view along which the gain images are acquired or a target gain image is synthesized from a plurality of basis gain images (BGI).
    Type: Application
    Filed: June 19, 2014
    Publication date: April 28, 2016
    Inventors: Christoph HERRMANN, Bernd MENSER
  • Publication number: 20150342554
    Abstract: A method (100) for processing a radiography image derived from an X-ray radiation passing through an object, and a radiography system (202) for performing such method. The method (100) comprises a step (104) of estimating, based on the radiography image, a scatter signal present in said radiography image; a step (106) of calculating, based on the estimated scatter signal, a scatter removal signal indicative of a scattered radiation removable from the X-ray radiation passing through the object by a reference anti-scatter device; and a step (110) of correcting the radiography image based on the scatter removal signal.
    Type: Application
    Filed: November 26, 2014
    Publication date: December 3, 2015
    Inventors: Detlef MENTRUP, Sascha Andreas JOCKEL, Hanns-Ingo MAACK, Bernd MENSER
  • Patent number: 8193501
    Abstract: A detector unit (301) for detecting electromagnetic radiation (106), the detector unit (301) comprising a conversion material (332) adapted for converting impinging electromagnetic radiation (106) into electric charge carriers, a charge collection electrode (331) adapted for collecting the converted electric charge carriers, a shielding electrode (334, 335) adapted to form a capacitance with the charge collection electrode (331), and an evaluation circuit (312 to 315) electrically coupled with the charge collection electrode (331) and adapted for evaluating the electromagnetic radiation (106) based on the collected electric charge carriers.
    Type: Grant
    Filed: July 12, 2007
    Date of Patent: June 5, 2012
    Assignee: Koninklijke Philips Electronics N.V.
    Inventors: Walter Rutten, Matthias Simon, Rainer Kiewitt, Christoph Herrmann, Bernd Menser
  • Patent number: 8154631
    Abstract: The application describes an X-ray detector, which uses direct X-ray conversion (DiCo) combined with CMOS pixel circuits. DiCo materials have to be used with high voltage to achieve a high field strength. This makes the sensor prone to leakage currents, which falsify the measured charge result. Moreover, most direct conversion materials suffer from large residual signals that lead to temporal artifacts (ghost images) in an X-ray image sequence. A circuit is described, which senses the sensor's dark current including residual signals from previous exposures before the sensor is exposed (again) to X-ray, and freezes relevant circuit parameters at the end of the sensing phase in such way, that the dark current (leakage current and residual signal) can still be drained during exposure. Therefore, the charge pulses generated in the sensor due to X-ray exposure can be integrated without charges carried by the leakage current or residual signal, thus obtaining a more accurate estimate of the deposited X-ray energy.
    Type: Grant
    Filed: September 17, 2007
    Date of Patent: April 10, 2012
    Assignee: Koninklijke Philips Electronics N.V.
    Inventors: Christoph Herrmann, Walter Ruetten, Matthias Simon, Bernd Menser
  • Publication number: 20110211668
    Abstract: The invention relates to converter element (100) for a radiation detector, particularly for a Spectral CT scanner. The converter element (100) comprises at least two conversion cells (131) that are at least partially separated from each other by intermediate separation walls (135) which affect the spreading of electrical signals generated by incident radiation (X). The conversion cells (131) may particularly consist of a crystal of CdTe and/or CdZnTe. Said crystal is preferably grown by e.g. vapor deposition between preformed separation walls.
    Type: Application
    Filed: November 9, 2009
    Publication date: September 1, 2011
    Applicant: KONINKLIJKE PHILIPS ELECTRONICS N.V.
    Inventors: Roger Steadman Booker, Matthias Simon, Christoph Herrmann, Bernd Menser, Jens Wiegert, Klaus Juergen Engel, Christian Baeumer, Oliver Muelhens
  • Publication number: 20100232725
    Abstract: A system and method of generating a template of at least one artifact for use in image correction is disclosed. An image containing the artifact is generated using at least two homogeneous exposures, each generated at a different detector operating temperature. The local variance of grey values at each pixel position in the image is calculated. Each pixel in the image is then classified. A binary image is generated based on the classification. The template is then formed based on both the binary image and the image data containing the artifact.
    Type: Application
    Filed: March 15, 2007
    Publication date: September 16, 2010
    Applicant: Koninklijke Philips Electronics N.V.
    Inventors: Johannes Albert Luijendijk, Heidrun Steinhauser, Bernd Menser
  • Publication number: 20090321643
    Abstract: A detector unit (301) for detecting electromagnetic radiation (106), the detector unit (301) comprising a conversion material (332) adapted for converting impinging electromagnetic radiation (106) into electric charge carriers, a charge collection electrode (331) adapted for collecting the converted electric charge carriers, a shielding electrode (334, 335) adapted to form a capacitance with the charge collection electrode (331), and an evaluation circuit (312 to 315) electrically coupled with the charge collection electrode (331) and adapted for evaluating the electromagnetic radiation (106) based on the collected electric charge carriers.
    Type: Application
    Filed: July 12, 2007
    Publication date: December 31, 2009
    Applicant: KONINKLIJKE PHILIPS ELECTRONICS N.V.
    Inventors: Walter Rutten, Matthias Simon, Rainer Kiewitt, Christoph Herrmann, Bernd Menser
  • Publication number: 20090290050
    Abstract: The application describes an X-ray detector, which uses direct X-ray conversion (DiCo) combined with CMOS pixel circuits. DiCo materials have to be used with high voltage to achieve a high field strength. This makes the sensor prone to leakage currents, which falsify the measured charge result. Moreover, most direct conversion materials suffer from large residual signals that lead to temporal artifacts (ghost images) in an X-ray image sequence. A circuit is described, which senses the sensor's dark current including residual signals from previous exposures before the sensor is exposed (again) to X-ray, and freezes relevant circuit parameters at the end of the sensing phase in such way, that the dark current (leakage current and residual signal) can still be drained during exposure. Therefore, the charge pulses generated in the sensor due to X-ray exposure can be integrated without charges carried by the leakage current or residual signal, thus obtaining a more accurate estimate of the deposited X-ray energy.
    Type: Application
    Filed: September 17, 2007
    Publication date: November 26, 2009
    Applicant: KONINKLIJKE PHILIPS ELECTRONICS N.V.
    Inventors: Christoph Herrmann, Walter Ruetten, Matthias Simon, Bernd Menser