Patents by Inventor Bernd Ruedinger
Bernd Ruedinger has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20240199474Abstract: A transparent, chemically prestressable or chemically prestressed glass ceramic is provided. The glass ceramic has keatite as a main crystal phase, a transmittance greater than 80% at a thickness of 0.7 mm, a haze of less than or equal to 10, and a crystal phase content of at least 80% by weight of keatite solid solution based on all crystal phases in the glass ceramic.Type: ApplicationFiled: December 15, 2023Publication date: June 20, 2024Applicant: SCHOTT AGInventors: Meike Schneider, Bernd Rüdinger, Uwe Martens
-
Publication number: 20240199473Abstract: A transparent, chemically prestressable or chemically prestressed glass ceramic has a high transmittance, a low haze and a high crystal phase content of keatite solid solution. A method of making such a glass ceramic includes producing a silicate green glass with a melting process and subsequent hot shaping, temperature treating the silicate green glass with at least one nucleation step carried out in the temperature range of 690° C. to 850° C. for a period of 5 min to 72 h and at least one ceramization step carried out in the temperature range of 780° ° C. to 1100° C. for a period of 3 min to 150 h, and performing at least one ion exchange in an exchange bath at a temperature of the exchange bath between 370° C. and 500° ° C.Type: ApplicationFiled: December 15, 2023Publication date: June 20, 2024Applicant: SCHOTT AGInventors: Meike Schneider, Bernd Rüdinger, Uwe Martens
-
Publication number: 20230183128Abstract: A cover glass is provided that includes a silica based glass ceramic with a thickness between 0.4 mm and 0.85 mm. The glass ceramic has a transmittance of more than 80% from 380 nm to 780 nm and a stress attribute selected from: an overall compressive stress (CS) of at least 250 MPa and at most 1500 MPa, a compressive stress at a depth of 30 ?m (CS30) from one of the two faces of at least 160 MPa and at most 525 MPa, a depth of the compression layer (DoCL) of at least 0.2 times the thickness and less than 0.5 times the thickness, and any combinations thereof. The glass ceramic has at least one silica based crystal phase having in a near-surface layer a unit cell volume of at least 1% by volume larger than that of a core where the crystal phase has minimum stresses.Type: ApplicationFiled: December 12, 2022Publication date: June 15, 2023Applicants: SCHOTT AG, SCHOTT Technical Glass Solutions GmbHInventors: Ruediger Dietrich, Meike SCHNEIDER, Jochen Alkemper, Lars Mueller, Thomas Pfeiffer, Julian Koch, Bernd Ruedinger
-
Publication number: 20230183127Abstract: A cover glass made of a glass ceramic that is silica based and has a main crystal phase of high quartz solid solution or keatite solid solution is provided. The cover glass has a stress profile with at least one inflection point at a depth of the cover glass of more than 10 ?m, a thickness from 0.1 mm to 2 mm, and a chemical tempering structure with a surface compressive stress of at least 250 MPa and at most 1500 MPa. A process for producing the cover glass is provided that includes producing a silica based green glass, hot shaping the silica based green glass, thermally treating the silica based green glass with a nucleation step and a ceramization step, and performing an ion exchange at an exchange bath temperature for a duration of time in an exchange bath.Type: ApplicationFiled: December 12, 2022Publication date: June 15, 2023Applicants: SCHOTT AG, SCHOTT Technical Glass Solutions GmbHInventors: Lars Mueller, Ruediger Dietrich, Thomas Pfeiffer, Julian Koch, Bernd Ruedinger, Meike Schneider, Jochen Alkemper
-
Publication number: 20220332630Abstract: A glass includes a composition characterized by the following constituent phases (in mol-%): 20-80 lanthanum titanate; 10-50 lanthanum niobate; 0-60 lanthanum molybdenum borate; 2-40 lanthanum borate; 2-40 yttrium borate; 0-40 gadolinium borate; 2-40 zirconium silicate; 2-40 diboron trioxide; and 0-20 silicon dioxide. A refractive index is at least 2.00.Type: ApplicationFiled: April 20, 2022Publication date: October 20, 2022Applicant: Schott AGInventors: Ulrich Fotheringham, Simone Monika Ritter, Bernd Rüdinger, Peter Nabe
-
Publication number: 20210344039Abstract: The disclosure relates to an aluminum-doped lithium ion conductor based on a garnet structure comprising lanthanum, in particular an aluminum-doped lithium lanthanum zirconate (LLZO), in which the latter is co-doped with at least one trivalent M3+ ion on the lanthanum site, and in which the trivalent M3+ ion has an ionic radius that is smaller than that of La3+, and a higher lithium content is present in comparison to a stoichiometric garnet structure, with the provision that if M3+ is yttrium, a further trivalent M3+ ion, which is different than Y3+ and has an ionic radius that is smaller than that of La3+, is co-doped on the lanthanum site. A co-doping strategy is carried out, in which a doping on the lanthanum site with ions of the same valence, but smaller diameter brings about the change in the lattice geometry to the cubic modification. This leads to a stabilization of the cubic crystal modification that is present also with superstoichiometric quantities of lithium.Type: ApplicationFiled: April 29, 2021Publication date: November 4, 2021Applicant: SCHOTT AGInventors: Sebastian Leukel, Meike Schneider, Andreas Roters, Jörg Schumacher, Wolfgang Schmidbauer, Bernd Rüdinger
-
Patent number: 10562808Abstract: A highly crystalline transparent, translucent or opaque lithium aluminium silicate (LAS) glass-ceramic which has a proportion of residual glass phase of less than 20% by weight and also the use thereof is described.Type: GrantFiled: November 6, 2015Date of Patent: February 18, 2020Assignee: SCHOTT AGInventors: Friedrich Siebers, Bernd Ruedinger, Falk Gabel, Evelin Weiss
-
Patent number: 10207948Abstract: The present invention relates to an improved cordierite glass-ceramic. In order to improve the materials properties, it is proposed that the glass-ceramic comprising SiO2, Al2O3, MgO and Li2O contains cordierite as main crystal phase and that a secondary crystal phase of the glass-ceramic comprises high-quartz solid solution and/or keatite solid solution. The invention further relates to a process for producing such a glass-ceramic and the use of such a glass-ceramic.Type: GrantFiled: October 12, 2017Date of Patent: February 19, 2019Assignee: SCHOTT AGInventors: Meike Schneider, Oliver Hochrein, Bianca Schreder, Bernd Ruedinger, Martun Hovhannisyan
-
Publication number: 20180037493Abstract: The present invention relates to an improved cordierite glass-ceramic. In order to improve the materials properties, it is proposed that the glass-ceramic comprising SiO2, Al2O3, MgO and Li2O contains cordierite as main crystal phase and that a secondary crystal phase of the glass-ceramic comprises high-quartz solid solution and/or keatite solid solution. The invention further relates to a process for producing such a glass-ceramic and the use of such a glass-ceramic.Type: ApplicationFiled: October 12, 2017Publication date: February 8, 2018Inventors: Meike Schneider, Oliver Hochrein, Bianca Schreder, Bernd Ruedinger, Martun Hovhannisyan
-
Publication number: 20160130175Abstract: A highly crystalline transparent, translucent or opaque lithium aluminium silicate (LAS) glass-ceramic which has a proportion of residual glass phase of less than 20% by weight and also the use thereof is described.Type: ApplicationFiled: November 6, 2015Publication date: May 12, 2016Applicant: SCHOTT AGInventors: Friedrich Siebers, Bernd Ruedinger, Falk Gabel, Evelin Weiss
-
Patent number: 8859079Abstract: A glass having excellent resistance against surface damages is provided. The glass includes a content of alkaline earth oxides of at least 0.3% by weight and of P2O5 of 0.1 to 4% by weight; the glass has at least one surface that has precipitations with a mean size of 1 to 20 ?m. A method is further provided and includes melting a glass batch, yielding a glass melt, and casting the glass melt onto a float bath. The glass melt is maintained on the float bath at a temperature of above 1000° C. for at least 5 minutes, and yields glass. The glass has a content of alkaline earth oxides of at least 0.3% by weight and of P2O5 of 0.1 to 4% by weight, and the glass has at least one surface that has precipitations with a mean size of 1 to 20 ?m.Type: GrantFiled: July 8, 2011Date of Patent: October 14, 2014Assignee: Schott AGInventors: Friedrich Siebers, Bernd Ruedinger, Andreas Langsdorf, Markus Heiss
-
Publication number: 20140256530Abstract: A glass-ceramic is disclosed which can be used in particular as a dielectric and which has at least the following constituents (in mol % on oxide basis): SiO2 1-50, Al2O3 0-20, B2O3 0-25, TiO2 10-70, RE2O3 0-35, wherein RE is lanthanum, another lanthanoid, or yttrium, wherein Ti may be replaced in part, preferably up to 10%, by Zr, Hf, Y, Nb, V, Ta, and wherein the porosity is less than 0.5%.Type: ApplicationFiled: May 21, 2014Publication date: September 11, 2014Applicant: Schott AGInventors: Hubertus BRAUN, Martin LETZ, Bernd RUEDINGER, Daniela SEILER
-
Patent number: 8728961Abstract: A method is described for making a float glass convertible into a glass ceramic, by which a largely crystal fault-free glass can be produced. In this method the glass is cooled from a temperature (TKGmax), at which a crystal growth rate is at a maximum value (KGmax), to another temperature (TUEG), at which practically no more crystal growth occurs, with a cooling rate, KR, in ° C. min?1 according to: KR UEG KGmax ? ? ? ? T UEG KGmax 100 · KG ? ? max , wherein ?T=TKGmax?TUEG, and KGmax=maximum crystal growth rate in ?m min?1. The float glass has a thickness below an equilibrium thickness, a net width of at least 1 m and has no more than 50 crystals with a size of more than 50 ?m, especially no crystals with a size of more than 10 ?m, per kilogram of glass within the net width.Type: GrantFiled: July 27, 2011Date of Patent: May 20, 2014Assignee: Schott AGInventors: Gerhard Lautenschlaeger, Andreas Langsdorf, Ulrich Lange, Bernd Ruedinger, Klaus Schneider, Michael Jacquorie, Friedrich Siebers, Wolfgang Schmidbauer
-
Publication number: 20130120193Abstract: A glass-ceramic which is particularly suitable as dielectric for use in the high-frequency range, in particular as dielectric resonator, as electronic frequency filter element or as antenna element is disclosed. The glass-ceramic has at least the following constituents (in mol % on an oxide basis): 5-50% of SiO2, 0-20% of Al2O3, 0-25% of B2O3, 0-25% of BaO, 10-60% of TiO2, 5-35% of Re2O3, where Ba can be partly replaced by Sr, Ca, Mg, where Re is a lanthanide or yttrium and where Ti can be partly replaced by Zr, Hf, Y, Nb, V, Ta.Type: ApplicationFiled: November 16, 2011Publication date: May 16, 2013Applicant: SCHOTT AGInventors: Bernd Hoppe, Michael Kluge, Stephan Knoener, Martin Letz, Bernd Ruedinger, Daniela Seiler
-
Patent number: 8263509Abstract: A process for the production of a glass-ceramic comprises the following steps: a) providing a mixture comprising at least SiO2, Al2O3, BaO and TiO2, b) melting the mixture in order to produce a glass phase, c) cooling the glass phase, and d) ceramicizing the glass phase. In the process, the glass phase is heated over the course of at most 5 minutes, preferably over the course of at most 3 minutes, to a temperature in the region of the crystallization temperature of Ba1-xZ1xTi1-yZ2yO3, whereby Z1 is an element selected from the group consisting of Sr, Ca, Ce, Pb, La and Sm, whereby Z2 is an element selected from the group consisting of Zr, Hf, Nb, V, Y, Sc and Ta, and whereby x and y are each independently of one another 0?x,y?0.5, preferably 0?x,y?0.1, but substantially below the crystallization temperature of Ba[Al2Si2O8].Type: GrantFiled: June 4, 2010Date of Patent: September 11, 2012Assignee: Schott AGInventors: Bernd Hoppe, Daniela Seiler, Bernd Ruedinger, Ina Mitra, Maria-Louisa Reich, Martin Letz, Michael Kluge
-
Publication number: 20120108414Abstract: A method of ceramicizing a floated glass is provided where the glass ceramic material obtained thereby has high stability because of the special quality of the atmosphere in the ceramicizing process. The glass ceramics thus obtained have special surface properties that avoid crack formation. Thereby very high bending tensile strengths are achieved. These glass ceramics can be used as fire protection glass, hot plate of a cooker having a coating on the lower side, safety glass, panes of wood-burning fireplace inserts, in colored form as hot plate of a cooker, base plate, thermally resistant panel lining in furnaces and microwave facilities.Type: ApplicationFiled: November 3, 2011Publication date: May 3, 2012Applicant: SCHOTT AGInventors: Bernd Ruedinger, Friedrich Siebers, Gerhard Lautenschlaeger, Matthias Baesel
-
Patent number: 8141387Abstract: The process of making the glass-ceramic includes ceramicizing a starting glass at a heating or cooling rate during the ceramicization of at least 10 K/min, so that the glass-ceramic contains at least 50% by volume of ferroelectric crystallites with a maximum diameter of from 20 to 100 nm and not more than 10% by volume of nonferroelectric crystallitesis. The glass ceramic produced by the process contains no pores or not more than 0.01% by volume of the pores and a value of e?·V2max of the glass-ceramic is at least 20 (MV/cm)2, wherein e? is the dielectric constant at 1 kHz and Vmax is the breakdown voltage per unit thickness. The ferroelectric crystallites preferably have a perovskite structure and are composed of substantially pure or doped BaTiO3 and/or BaTi2O5.Type: GrantFiled: February 25, 2009Date of Patent: March 27, 2012Assignee: Schott AGInventors: Martin Letz, Mark J. Davis, Bernd Ruedinger, Bernd Hoppe, Bianca Schreder, Maria-Louisa Aigner, Daniela Seiler
-
Publication number: 20120028015Abstract: Laminated, transparent set of panes made of brittle materials and interleaved laminated films, wherein the brittle materials are various glasses, special glasses, glass-ceramics, transparent ceramics and crystalline materials, process for producing and bending the set of panes and films, and its use thereof, as a bulletproof, unbreakable and shockproof glazing with a low weight per unit area.Type: ApplicationFiled: July 20, 2011Publication date: February 2, 2012Inventors: Andreas Langsdorf, Markus Heiss, Doris Moseler, Axel Ohlinger, Volker Seibert, Otmar Becker, Bernd Ruedinger, Thilo Zachau
-
Publication number: 20120009386Abstract: A glass having excellent resistance against surface damages is provided. The glass includes a content of alkaline earth oxides of at least 0.3% by weight and of P2O5 of 0.1 to 4% by weight; the glass has at least one surface that has precipitations with a mean size of 1 to 20 ?m. A method is further provided and includes melting a glass batch, yielding a glass melt, and casting the glass melt onto a float bath. The glass melt is maintained on the float bath at a temperature of above 1000° C. for at least 5 minutes, and yields glass. The glass has a content of alkaline earth oxides of at least 0.3% by weight and of P2O5 of 0.1 to 4% by weight, and the glass has at least one surface that has precipitations with a mean size of 1 to 20 ?m.Type: ApplicationFiled: July 8, 2011Publication date: January 12, 2012Inventors: Friedrich Siebers, Bernd Ruedinger, Andreas Langsdorf, Markus Heiss
-
Publication number: 20110281099Abstract: A method is described for making a float glass convertible into a glass ceramic, by which a largely crystal fault-free glass can be produced. In this method the glass is cooled from a temperature (TKGmax), at which a crystal growth rate is at a maximum value (KGmax), to another temperature (TUEG), at which practically no more crystal growth occurs, with a cooling rate, KR, in ° C. min?1 according to: KR UEG KGmax ? ? ? ? T UEG KGmax 100 · KGmax , wherein ?T=TKGmax?TUEG, and KGmax=maximum crystal growth rate in ?m min?1. The float glass has a thickness below an equilibrium thickness, a net width of at least 1 m and has no more than 50 crystals with a size of more than 50 ?m, especially no crystals with a size of more than 10 ?m, per kilogram of glass within the net width.Type: ApplicationFiled: July 27, 2011Publication date: November 17, 2011Inventors: Gerhard Lautenschlaeger, Andreas Langsdorf, Ulrich Lange, Bernd Ruedinger, Klaus Schneider, Michael Jacquorie, Friedrich Siebers, Wolfgang Schmidbauer