Patents by Inventor Bernd Sailer

Bernd Sailer has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240090346
    Abstract: A monofilament (100) for producing an Nb3 Sn-containing superconductor wire (33) includes a powder core (1) with an Sn-containing powder, a reaction tube (3) composed of an Nb alloy that includes Nb and at least one further alloy component X. The powder core is disposed within the reaction tube. The monofilament also includes at least two sources (4) for at least one partner component Pk. A respective source includes one or more source structures at a unitary radial position in the monofilament. The source structures are at different radial positions. The alloy component X and the partner component Pk form precipitates XPk on reaction annealing of the monofilament in which Sn from the powder core and Nb from the reaction tube react to produce Nb3 Sn. The powder core is disposed in a moderation tube, which is disposed within the reaction tube. This provides a monofilament with improved current carrying capacity.
    Type: Application
    Filed: August 18, 2023
    Publication date: March 14, 2024
    Inventors: Carl BUEHLER, Vital ABAECHERLI, Bernd SAILER, Klaus SCHLENGA, Manfred THOENER, Matheus WANIOR
  • Patent number: 11758827
    Abstract: A monofilament (100) for producing an Nb3Sn-containing superconductor wire (33) includes a powder core (1) with an Sn-containing powder, a reaction tube (3) composed of an Nb alloy that includes Nb and at least one further alloy component X. The powder core is disposed within the reaction tube. The monofilament also includes at least one source (4) for at least one partner component Pk. A respective source includes one or more source structures at a unitary radial position in the monofilament. The alloy component X and the partner component Pk form precipitates XPk on reaction annealing of the monofilament in which Sn from the powder core and Nb from the reaction tube react to produce Nb3Sn. The powder core is disposed in a moderation tube, which in turn is disposed within the reaction tube. This provides a monofilament for a powder-in-tube based Nb3Sn-containing superconductor wire with improved current carrying capacity.
    Type: Grant
    Filed: October 25, 2019
    Date of Patent: September 12, 2023
    Assignee: BRUKER EAS GMBH
    Inventors: Carl Buehler, Vital Abaecherli, Bernd Sailer, Klaus Schlenga, Manfred Thoener, Matheus Wanior
  • Patent number: 11653575
    Abstract: A subelement (1) for an Nb3Sn-containing superconductor wire includes an Sn-containing core (2), an inner matrix (5) which includes Cu and surrounds the Sn-containing core (2), a region (7) of mutually abutting Nb-containing rod elements (8, 30), which surrounds the inner matrix (5), where the Nb-containing rod elements (8, 30) are each configured with an Nb-containing core filament (9; 31) and a Cu-containing filament casing (10), an outer matrix (6) which includes Cu and surrounds the region (7) of Nb-containing rod elements (8, 30). The Sn-containing core (2) has a core tube (3) into which an Sn-containing powder (4) has been introduced, the Sn-containing powder (4) being in a compacted state. This provides a subelement for an Nb3Sn-containing superconductor wire which cost-effectively yields an improved superconducting current carrying capacity.
    Type: Grant
    Filed: December 22, 2021
    Date of Patent: May 16, 2023
    Assignee: BRUKER EAS GMBH
    Inventors: Klaus Schlenga, Matheus Wanior, Vital Abaecherli, Manfred Thoener, Carl Buehler, Bernd Sailer
  • Patent number: 11515462
    Abstract: For producing an Nb3Sn superconductor wire, restack rod process (RRP) subelements (1a; 60a) are grouped to form a bundle having an approximately circular cross section and are arranged together with filling elements (18a-18c) in an internally and externally round outer tube (19; 52). To the inside the filling elements form a serrated profile (25) for abutment against the hexagonal subelements, and to the outside they form a round profile (24) for direct or indirect abutment in the outer tube. In fabricating the RRP subelements, and before a reshaping with a reduction in cross section, an externally hexagonal and internally round casing structure (9) is provided, into which the remaining parts of the subelements are inserted, in particular, an annular arrangement of hexagonal Nb-containing rod elements (4), which are surrounded externally by an outer matrix (7, 61) and internally by an inner matrix (3).
    Type: Grant
    Filed: October 4, 2021
    Date of Patent: November 29, 2022
    Assignee: BRUKER EAS GMBH
    Inventors: Matheus Wanior, Vital Abaecherli, Carl Buehler, Bernd Sailer, Klaus Schlenga, Manfred Thoener, Michael Field
  • Publication number: 20220115578
    Abstract: A subelement (1) for an Nb3Sn-containing superconductor wire includes an Sn-containing core (2), an inner matrix (5) which includes Cu and surrounds the Sn-containing core (2), a region (7) of mutually abutting Nb-containing rod elements (8, 30), which surrounds the inner matrix (5), where the Nb-containing rod elements (8, 30) are each configured with an Nb-containing core filament (9; 31) and a Cu-containing filament casing (10), an outer matrix (6) which includes Cu and surrounds the region (7) of Nb-containing rod elements (8, 30). The Sn-containing core (2) has a core tube (3) into which an Sn-containing powder (4) has been introduced, the Sn-containing powder (4) being in a compacted state. This provides a subelement for an Nb3Sn-containing superconductor wire which cost-effectively yields an improved superconducting current carrying capacity.
    Type: Application
    Filed: December 22, 2021
    Publication date: April 14, 2022
    Inventors: Klaus SCHLENGA, Matheus WANIOR, Vital ABAECHERLI, Manfred THOENER, Carl BUEHLER, Bernd SAILER
  • Patent number: 11264150
    Abstract: A method for producing an at least two-part structure, such as a semifinished product for a superconducting wire is provided. A first structure and a second structure are separately produced, and the first structure and the second structure are then inserted one into the other. The first structure and the second structure are respectively produced in layers by selective laser melting or selective electron beam melting of a powder. The method produces two-part structures for semifinished products of superconducting wires.
    Type: Grant
    Filed: January 23, 2018
    Date of Patent: March 1, 2022
    Assignee: BRUKER EAS GMBH
    Inventors: Klaus Schlenga, Vital Abaecherli, Bernd Sailer, Manfred Thoener, Matheus Wanior
  • Publication number: 20220029084
    Abstract: For producing an Nb3Sn superconductor wire, restack rod process (RRP) subelements (1a; 60a) are grouped to form a bundle having an approximately circular cross section and are arranged together with filling elements (18a-18c) in an internally and externally round outer tube (19; 52). To the inside the filling elements form a serrated profile (25) for abutment against the hexagonal subelements, and to the outside they form a round profile (24) for direct or indirect abutment in the outer tube. In fabricating the RRP subelements, and before a reshaping with a reduction in cross section, an externally hexagonal and internally round casing structure (9) is provided, into which the remaining parts of the subelements are inserted, in particular, an annular arrangement of hexagonal Nb-containing rod elements (4), which are surrounded externally by an outer matrix (7, 61) and internally by an inner matrix (3).
    Type: Application
    Filed: October 4, 2021
    Publication date: January 27, 2022
    Inventors: Matheus WANIOR, Vital ABAECHERLI, Carl BUEHLER, Bernd SAILER, Klaus SCHLENGA, Manfred THOENER, Michael FIELD
  • Publication number: 20200136009
    Abstract: A monofilament (100) for producing an Nb3Sn-containing superconductor wire (33) includes a powder core (1) with an Sn-containing powder, a reaction tube (3) composed of an Nb alloy that includes Nb and at least one further alloy component X. The powder core is disposed within the reaction tube. The monofilament also includes at least one source (4) for at least one partner component Pk. A respective source includes one or more source structures at a unitary radial position in the monofilament. The alloy component X and the partner component Pk form precipitates XPk on reaction annealing of the monofilament in which Sn from the powder core and Nb from the reaction tube react to produce Nb3Sn. The powder core is disposed in a moderation tube, which in turn is disposed within the reaction tube. This provides a monofilament for a powder-in-tube based Nb3Sn-containing superconductor wire with improved current carrying capacity.
    Type: Application
    Filed: October 25, 2019
    Publication date: April 30, 2020
    Inventors: Carl BUEHLER, Vital ABAECHERLI, Bernd SAILER, Klaus SCHLENGA, Manfred THOENER, Matheus WANIOR
  • Patent number: 10622537
    Abstract: A method for producing a semifinished product for a superconducting wire is provided herein. The semifinished product includes at least one NbTi-containing structure, such as a NbTi-containing rod structure. The NbTi-containing structure may be produced in layers by selective laser melting or selective electron beam melting of a powder that contains Nb and Ti. In the production of at least some layers of the NbTi-containing structure, during the production of an irradiated area provided for a material deposition of a respective layer, at least one process parameter of the selective laser melting or electron beam melting is varied in one or a plurality of first zones of the irradiated area as compared to one or a plurality of second zones of the irradiated area. The present techniques simplify introduction of artificial pinning centers into the NbTi-material of a superconducting wire or a semifinished product for such a superconducting wire.
    Type: Grant
    Filed: January 23, 2018
    Date of Patent: April 14, 2020
    Assignee: BRUKER EAS GMBH
    Inventors: Vital Abaecherli, Klaus Schlenga, Bernd Sailer, Manfred Thoener, Matheus Wanior
  • Publication number: 20180211747
    Abstract: A method for producing an at least two-part structure, such as a semifinished product for a superconducting wire is provided. A first structure and a second structure are separately produced, and the first structure and the second structure are then inserted into one another. The first structure and the second structure are respectively produced in layers by selective laser melting or selective electron beam melting of a powder. The method produces two-part structures for semifinished products of superconducting wires.
    Type: Application
    Filed: January 23, 2018
    Publication date: July 26, 2018
    Inventors: Klaus SCHLENGA, Manfred THOENER, Bernd SAILER, Vital ABAECHERLI, Matheus WANIOR
  • Publication number: 20180212135
    Abstract: A method for producing a semifinished product for a superconducting wire is provided herein. The semifinished product includes at least one NbTi-containing structure, such as a NbTi-containing rod structure. The NbTi-containing structure may be produced in layers by selective laser melting or selective electron beam melting of a powder that contains Nb and Ti. In the production of at least some layers of the NbTi-containing structure, during the production of an irradiated area provided for a material deposition of a respective layer, at least one process parameter of the selective laser melting or electron beam melting is varied in one or a plurality of first zones of the irradiated area as compared to one or a plurality of second zones of the irradiated area. The present techniques simplify introduction of artificial pinning centers into the NbTi-material of a superconducting wire or a semifinished product for such a superconducting wire.
    Type: Application
    Filed: January 23, 2018
    Publication date: July 26, 2018
    Inventors: Klaus SCHLENGA, Manfred THOENER, Bernd SAILER, Vital ABAECHERLI, Matheus WANIOR
  • Patent number: 9741471
    Abstract: A semifinished wire (1) for a superconducting wire containing Nb3Sn has a Cu stabilization cladding tube (2), a ring-shaped closed diffusion barrier (3) in the inside of the Cu stabilization cladding tube (2) and a plurality of PIT elements (6) in the inside of the diffusion barrier (3), each having a cladding (8) containing Cu, a small tube (9), and a powder core (10) containing Sn. The small tube (9) consists of Nb or an alloy containing Nb and the diffusion barrier (3) has a percentage of area ADF in cross-section of the semifinished wire (1) of 3% ADF 9% and a wall thickness WDF with 8 ?m?WDF?25 ?m. A plurality of filler elements (5) are arranged inside the diffusion barrier (3), with the inner sides of the filler elements (5) abutting the PIT elements (6).
    Type: Grant
    Filed: February 22, 2016
    Date of Patent: August 22, 2017
    Assignee: Bruker EAS GmbH
    Inventors: Manfred Thoener, Bernd Sailer
  • Patent number: 9470561
    Abstract: A sensor arrangement for a hydraulic displacer unit includes a plurality of sensors which, at least in some sections, are positioned jointly in a sensor housing. The sensors are configured to be contacted via a common plug.
    Type: Grant
    Filed: March 20, 2014
    Date of Patent: October 18, 2016
    Assignee: Robert Bosch GmbH
    Inventors: Wilfried Eichner, Bernd Huehn, Juergen Gintner, Bernd Sailer, Grit Geiβler, Dirk van Aalst, Hans-Joachim Vagt, Jochen Kircher
  • Publication number: 20160247606
    Abstract: A semifinished wire (1) for a superconducting wire containing Nb3Sn has a Cu stabilization cladding tube (2), a ring-shaped closed diffusion barrier (3) in the inside of the Cu stabilization cladding tube (2) and a plurality of PIT elements (6) in the inside of the diffusion barrier (3), each having a cladding (8) containing Cu, a small tube (9), and a powder core (10) containing Sn. The small tube (9) consists of Nb or an alloy containing Nb and the diffusion barrier (3) has a percentage of area ADF in cross-section of the semifinished wire (1) of 3% ADF 9% and a wall thickness WDF with 8 ?m?WDF?25 ?m. A plurality of filler elements (5) are arranged inside the diffusion barrier (3), with the inner sides of the filler elements (5) abutting the PIT elements (6).
    Type: Application
    Filed: February 22, 2016
    Publication date: August 25, 2016
    Inventors: Manfred Thoener, Bernd Sailer
  • Publication number: 20140290397
    Abstract: A sensor arrangement for a hydraulic displacer unit includes a plurality of sensors which, at least in some sections, are positioned jointly in a sensor housing. The sensors are configured to be contacted via a common plug.
    Type: Application
    Filed: March 20, 2014
    Publication date: October 2, 2014
    Applicant: Robert Bosch GmbH
    Inventors: Wilfried Eichner, Bernd Huehn, Juergen Gintner, Bernd Sailer, Grit Geissler, Dirk van Aalst, Hans-Joachim Vagt, Jochen Kircher
  • Patent number: 8709961
    Abstract: A method for superconductingly connecting two or more wires (1, 2), each comprising at least one filament (3a-3d) that contains MgB2 or a mixture of Mg and B, wherein a superconducting connection is realized through exposed end regions (4a) of the filaments (3a-3d) via an MgB2 matrix, is characterized in that a bulk boron powder (4) is provided into which the exposed end regions (4a) of the filaments (3a-3d) of the wires (1, 2) project, the boron of the bulk boron powder (4) being present in amorphous modification. The bulk powder (4) is then compacted together with the projecting exposed end regions (4a) of the filaments (3a, 3b) to form a compressed element (8) and the compressed element (8) is infiltrated with molten magnesium (10) from the surface (13) of the compressed element (8). The method improves the quality, in particular, the current-carrying capacity and the critical magnetic field strength of a superconducting connection of MgB2 superconducting wires.
    Type: Grant
    Filed: February 18, 2010
    Date of Patent: April 29, 2014
    Assignee: Bruker EAS GmbH
    Inventors: Felicitas Tenbrink, André Aubele, Volker Gluecklich, Bernd Sailer, Klaus Schlenga
  • Patent number: 8420558
    Abstract: A method for connecting two or more superconducting wires (1, 2), each comprising at least one filament (3a-3b) that contains MgB2, wherein the superconducting connection is realized through exposed end regions (13) of the filaments (3a-3d) via a superconducting matrix, is characterized in that a bulk powder (4) of a high-temperature superconductor (HTS) powder with a transition temperature of Tc>40K is provided, into which the exposed end regions (13) of the filaments (3a-3d) project, wherein the Boron of the Boron powder of the bulk powder (4) is in amorphous modification, and the bulk powder (4) is compacted together with the projecting exposed end regions (13) of the filaments (3a-3d) to form a compressed element (8). The method improves the quality, in particular, the current carrying capacity and the critical magnetic field strength of a superconducting connection of two MgB2 wires.
    Type: Grant
    Filed: February 18, 2010
    Date of Patent: April 16, 2013
    Assignee: Bruker EAS GmbH
    Inventors: Felicitas Tenbrink, André Aubele, Volker Gluecklich, Bernd Sailer, Klaus Schlenga
  • Patent number: 8340737
    Abstract: A current lead (1) for connecting a superconducting load system (5), in particular, a magnet coil, to a current feed point (3a) that is at a higher temperature than the load system (5) comprises a flat, elongated carrier (6) and a plurality of mechanical and electrical parallel high-temperature superconductors (HTSC) (10), wherein the HTSCs (10) are disposed side by side on the carrier (6). The carrier (6) is made of stainless steel, and a plurality of HTSCs (10) are each disposed side by side on two opposite carrier (6) sides of the carrier. The carrier (6) is constituted in the shape of a plate with cut-outs (15; 15a-15d). The current lead has a high current capacity and low thermal conductivity and provides improved emergency conduction properties in case of failure of the superconductivity in the HTSC.
    Type: Grant
    Filed: July 30, 2010
    Date of Patent: December 25, 2012
    Assignee: Bruker HTS GmbH
    Inventors: Tabea Arndt, Martin Munz, André Aubele, Bernd Sailer
  • Publication number: 20120309631
    Abstract: A current lead (1) for connecting a superconducting load system (5), in particular, a magnet coil, to a current feed point (3a) that is at a higher temperature than the load system (5) comprises a flat, elongated carrier (6) and a plurality of mechanical and electrical parallel high-temperature superconductors (HTSC) (10), wherein the HTSCs (10) are disposed side by side on the carrier (6). The carrier (6) is made of stainless steel, and a plurality of HTSCs (10) are each disposed side by side on two opposite carrier (6) sides of the carrier. The carrier (6) is constituted in the shape of a plate with cut-outs (15; 15a-15d). The current lead has a high current capacity and low thermal conductivity and provides improved emergency conduction properties in case of failure of the superconductivity in the HTSC.
    Type: Application
    Filed: July 30, 2010
    Publication date: December 6, 2012
    Applicant: Bruker HTS GmbH
    Inventors: Tabea Arndt, Martin Munz, André Aubele, Bernd Sailer
  • Publication number: 20100216647
    Abstract: A method for superconductingly connecting two or more wires (1, 2), each comprising at least one filament (3a-3d) that contains MgB2 or a mixture of Mg and B, wherein a superconducting connection is realized through exposed end regions (4a) of the filaments (3a-3d) via an MgB2 matrix, is characterized in that a bulk boron powder (4) is provided into which the exposed end regions (4a) of the filaments (3a-3d) of the wires (1, 2) project, the boron of the bulk boron powder (4) being present in amorphous modification. The bulk powder (4) is then compacted together with the projecting exposed end regions (4a) of the filaments (3a, 3b) to form a compressed element (8) and the compressed element (8) is infiltrated with molten magnesium (10) from the surface (13) of the compressed element (8). The method improves the quality, in particular, the current-carrying capacity and the critical magnetic field strength of a superconducting connection of MgB2 superconducting wires.
    Type: Application
    Filed: February 18, 2010
    Publication date: August 26, 2010
    Applicant: Bruker HTS GmbH
    Inventors: Felicitas Tenbrink, André Aubele, Volker Gluecklich, Bernd Sailer, Klaus Schlenga