Patents by Inventor Bernd Seeber

Bernd Seeber has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10128428
    Abstract: A process for the manufacturing of 100% dense TMC bulk material by hot isostatic pressing (HIP) for manufacturing of ternary molybdenum chalcogenide (TMC) single or multifilamentary superconducting wires, in particular that of SnMo6S8 (SMS) and PbMo6S8 (PMS). Such wires allows generation of magnetic fields in excess of 24 Tesla, the limit of the presently used Nb3Sn wires. In addition, TMC superconducting wires are complementary to Nb3Sn because they have about four times higher mechanical strength, i.e., yield strength Rp02. The deformation process by hot extrusion and the hot wire drawing allow plastic/superplastic deformation of the TMC superconductor with perfect grain boundaries, increase the critical current density. Further, the use of high purity molybdenum, with a residual resistivity ratio of at least 100, is considered as an additional inventive step because molybdenum serves not only as a diffusion barrier but simultaneously as electrical stabilizer.
    Type: Grant
    Filed: February 10, 2014
    Date of Patent: November 13, 2018
    Assignee: scMetrology Sàrl
    Inventor: Bernd Seeber
  • Publication number: 20160351781
    Abstract: A process for the manufacturing of 100% dense TMC bulk material by hot isostatic pressing (HIP) for manufacturing of ternary molybdenum chalcogenide (TMC) single or multifilamentary superconducting wires, in particular that of SnMo6S8 (SMS) and PbMo6S8 (PMS). Such wires allows generation of magnetic fields in excess of 24 Tesla, the limit of the presently used Nb3Sn wires. In addition, TMC superconducting wires are complementary to Nb3Sn because they have about four times higher mechanical strength, i.e., yield strength Rp02. The deformation process by hot extrusion and the hot wire drawing allow plastic/superplastic deformation of the TMC superconductor with perfect grain boundaries, increase the critical current density. Further, the use of high purity molybdenum, with a residual resistivity ratio of at least 100, is considered as an additional inventive step because molybdenum serves not only as a diffusion barrier but simultaneously as electrical stabilizer.
    Type: Application
    Filed: February 10, 2014
    Publication date: December 1, 2016
    Inventor: Bernd SEEBER
  • Publication number: 20150325339
    Abstract: A method for manufacturing a superconducting wire having a plurality of filaments, at least some of which are twisted around the wire axis, characterized in that the superconducting filaments are twisted so that the majority of filaments comes to lie at an angle of twist greater than 50° with respect to the wire axis. It is possible in this way, using simple technical means, to significantly reduce the great dependence of the critical current of a superconducting wire at high magnetic fields as a function of an axial strain. In addition, with a corresponding arrangement of the superconducting filaments, the critical current dependence of a superconducting wire at high magnetic fields as a function of an axial strain can be largely canceled.
    Type: Application
    Filed: March 27, 2015
    Publication date: November 12, 2015
    Inventor: Bernd Seeber
  • Patent number: 5314714
    Abstract: Process for increasing the density and improving the homogeneity of Chevrel phase powders and Chevrel phase wire obtained using said process. Chevrel phase powers are compounds of lead, mobydenum, and sulfur. Metallic additives in the range of 0.5% to 20% by weight are introduced in the Chevrel phase powders by a physical or chemical process. The melting temperature of the metallic additives is lower than the synthesis temperature of the Chevrel phase powders so as to increase the homogeneity. The wires obtained using this process are capable of generating high magnetic fields.
    Type: Grant
    Filed: September 3, 1990
    Date of Patent: May 24, 1994
    Assignee: Promogap
    Inventors: Bernd Seeber, Oystein Fischer, Michel Decroux