Patents by Inventor Bernd Smarsly

Bernd Smarsly has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8834748
    Abstract: The present invention relates to a process for preparing transparent conductive oxides, comprising the following steps in the sequence of a-b-c: (a) reaction of at least one starting compound (A) comprising at least one metal or semimetal M and optionally of a dopant (D) comprising at least one doping element M?, where at least one M? is different than M, in the presence of a block copolymer (B) and of a solvent (C) to form a composite material (K), (b) optional application of the composite material (K) to a substrate (S) and (c) heating of the composite material (K) to a temperature of at least 350° C., wherein the block copolymer (B) comprises at least one alkylene oxide block (AO) and at least one isobutylene block (IB). The present invention further relates to the transparent conductive oxides thus obtainable, and to their use in electronic components, as an electrode material and as a material for antistatic applications.
    Type: Grant
    Filed: May 25, 2009
    Date of Patent: September 16, 2014
    Inventors: Gero Nordmann, Norbert Wagner, Alexander Traut, Christian Bittner, Ingo Münster, Bernd Smarsly, Yude Wang, Markus Antonietti, Simone Mascotto
  • Publication number: 20130220178
    Abstract: The current invention relates to a method of making metal oxide nanoparticles comprising the reaction of—at least one metal oxide precursor (P) containing at least one metal (M) with—at least one monofunctional alcohol (A) wherein the hydroxy group is bound to a secondary, tertiary or alpha-unsaturated carbon atom—in the presence of at least one aliphatic compound (F) according to the formula Y1—R1—X—R2—Y2, wherein—R1 and R2 each are the same or different and independently selected from aliphatic groups with from 1 to 20 carbon atoms, —Y1 and Y2 each are the same or different and independently selected from OH, NH2 and SH, and —X is selected from the group consisting of chemical bond, —O—, —S—, —NR3—, and CR4R5, wherein R3, R4 and R5 each are the same or different and represent a hydrogen atom or an aliphatic group with from 1 to 20 carbon atoms which optionally carries functional groups selected from OH, NH2 and SH.
    Type: Application
    Filed: October 7, 2010
    Publication date: August 29, 2013
    Applicant: Justus-Liebig-Universitat Giessen
    Inventors: Roman Zieba, Alexander Traut, Cornelia Röger-Göpfert, Torsten Brezesinski, Bernadette Landschreiber, Claudia Grote, Georg Garnweitner, Alexandra Seeber, Bernd Smarsly, Christoph Wiedmann, Till von Graberg, Jan Haetge
  • Publication number: 20120217681
    Abstract: The present invention relates to a process for producing metal oxide nanofibers using a sol-gel precursor. The nanofibers produced by the process according to the invention are notable for an increased metal oxide content compared to the prior art.
    Type: Application
    Filed: October 26, 2010
    Publication date: August 30, 2012
    Applicant: BASF SE
    Inventors: Roman Zieba, Felix Major, Evgueni Klimov, Alexander Traut, Laurence Pottie, Bernd Smarsly, Rainer Ostermann
  • Patent number: 8164881
    Abstract: An extremely high-performance polyaniline electrode was prepared by potentiostatic deposition of aniline on hierarchically porous carbon monolith (HPCM), which was carbonized from mesophase pitch. A capacitance value of 2200 F g?1 of polyaniline was obtained at a power density of 0.47 kW kg?1 and an energy density of 300 Wh kg?1. This active material deposited on HPCM also has an advantageous high stability. These superior advantages can be attributed to the backbone role of HPCM. This method also has the advantages of not introducing any binder, thus contributing to the increase of ionic conductivity and power density. High specific capacitance, high power and energy density, high stability, and low cost of active material make it very promising for supercapacitors.
    Type: Grant
    Filed: May 25, 2007
    Date of Patent: April 24, 2012
    Assignee: Max-Planck-Gesellschaft zur Foerderung der Wissenschaften e.V.
    Inventors: Yong-Sheng Hu, Yu-Guo Guo, Lizhen Fan, Joachim Maier, Philipp Adelhelm, Bernd Smarsly, Markus Antonietti
  • Publication number: 20110073814
    Abstract: The present invention relates to a process for preparing transparent conductive oxides, comprising the following steps in the sequence of a-b-c: (a) reaction of at least one starting compound (A) comprising at least one metal or semimetal M and optionally of a dopant (D) comprising at least one doping element M?, where at least one M? is different than M, in the presence of a block copolymer (B) and of a solvent (C) to form a composite material (K), (b) optional application of the composite material (K) to a substrate (S) and (c) heating of the composite material (K) to a temperature of at least 350° C., wherein the block copolymer (B) comprises at least one alkylene oxide block (AO) and at least one isobutylene block (IB). The present invention further relates to the transparent conductive oxides thus obtainable, and to their use in electronic components, as an electrode material and as a material for antistatic applications.
    Type: Application
    Filed: May 25, 2009
    Publication date: March 31, 2011
    Applicant: BASF SE
    Inventors: GERO Nordmann, Norbert Wagner, Alexander Traut, Christian Bittner, Ingo Münster, Bernd Smarsly, Yude Wang, Markus Antonietti, Simone Mascotto
  • Publication number: 20100008021
    Abstract: An extremely high-performance polyaniline electrode was prepared by potentiostatic deposition of aniline on hierarchically porous carbon monolith (HPCM), which was carbonized from mesophase pitch. A capacitance value of 2200 F g?1 of polyaniline was obtained at a power density of 0.47 kW kg?1 and an energy density of 300 Wh kg?1. This active material deposited on HPCM also has an advantageous high stability. These superior advantages can be attributed to the backbone role of HPCM. This method also has the advantages of not introducing any binder, thus contributing to the increase of ionic conductivity and power density. High specific capacitance, high power and energy density, high stability, and low cost of active material make it very promising for supercapacitors.
    Type: Application
    Filed: May 25, 2007
    Publication date: January 14, 2010
    Applicant: Max-Planck-Gesellschaft zur Foerderung der Wissenschaften e. V.
    Inventors: Yong-Sheng Hu, Yu-Guo Guo, Lizhen Fan, Joachim Maier, Philipp Adelhelm, Bernd Smarsly, Markus Antonietti
  • Publication number: 20090269667
    Abstract: This disclosure relates to a porous electrically conductive carbon material having interconnected pores in first and second size ranges from 10 ?m to 100 nm and from less than 100 nm to 3 nm and a graphene structure and to diverse uses of the material such as an electrode in a lithium-ion battery and a catalyst support, e.g. for the oxidation of methanol in a fuel cell. The carbon material has been heat treated to effect conversion to non-graphitic carbon with the required degree of order at a temperature in the range from 600° C. to 1000° C. A lithium-ion battery and an electrode for a lithium-ion battery are also claimed.
    Type: Application
    Filed: May 25, 2007
    Publication date: October 29, 2009
    Applicant: Max-Planck-Gesellschaft zur Foerderung der Wissenschaften e.V.
    Inventors: Markus Antonietti, Bernd Smarsly, Philipp Adelhelm, Joachim Maier, Sarmimala Hore, Yong-Sheng Hu, Yu-Guo Guo
  • Publication number: 20090176079
    Abstract: The present invention relates to a process based on phase separation for the production of porous carbon monoliths, to the monoliths produced in accordance with the invention, and to the use thereof.
    Type: Application
    Filed: April 28, 2007
    Publication date: July 9, 2009
    Inventors: Karin Cabrera-Perez, Phillip Adelhelm, Bernd Smarsly, Markus Antonietti