Patents by Inventor Berne K. Stober

Berne K. Stober has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9880035
    Abstract: Systems and methods for detecting coking in a wash bed of a vacuum pipe still with a sensing cable including an optical fiber sensor array aligned with a heating element disposed in the vessel. An optical signal interrogator is configured to measure a first temperature profile at a plurality of sensor locations to determine a flow distribution. An excitation source is configured to propagate at least one heat pulse through the heating element and the optical signal interrogator is configured to measure a second temperature profile corresponding to the heat pulse at the sensor locations. A control unit is configured to detect coking by determining one or more properties of the media exposed to the sensing cable at each of the plurality of sensor locations based on the second temperature profile corresponding thereto.
    Type: Grant
    Filed: March 27, 2014
    Date of Patent: January 30, 2018
    Assignee: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Yibing Zhang, Limin Song, Geoff Keiser, Michael Louis Hergenrother, Berne K. Stober, Patricia H. Kalamaras, Benjamin Santiago Umansky
  • Patent number: 9778115
    Abstract: Systems and methods for detecting a deposit in a vessel with a sensing cable including an optical fiber sensor array aligned with a heating element disposed in the vessel. An excitation source is configured to propagate at least one heat pulse through the heating element along at least a portion of the sensing cable to affect an exchange of thermal energy between the heating element and media exposed to the sensing cable. An optical signal interrogator is adapted to receive a signal from a plurality of sensor locations and configured to measure, a temperature profile corresponding to the heat pulse at the sensor locations. A control unit is configured to detect a deposit by determining one or more properties of the one or more media exposed to the sensing cable at each of the plurality of sensor locations based on the temperature profile corresponding thereto.
    Type: Grant
    Filed: March 27, 2014
    Date of Patent: October 3, 2017
    Assignee: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Yibing Zhang, Limin Song, Geoff Keiser, Michael Louis Hergenrother, Berne K. Stober, Patricia H. Kalamaras
  • Patent number: 9746434
    Abstract: Systems and methods for determining the flow distribution of a fluid through a component with a sensing cable including an optical fiber sensor array aligned with a heating element disposed in the component. An excitation source is configured to propagate at least one heat pulse through the heating element along at least a portion of the sensing cable to affect an exchange of thermal energy between the heating element and the fluid exposed to the sensing cable. An optical signal is adapted to receive a signal from each of a plurality of sensor locations and measure a temperature profile corresponding to the heat pulse at the sensor locations. A control unit is configured to determine a flow of the fluid by determining one or more properties of the fluid exposed to the sensing cable at each of the plurality of sensor locations based on the temperature profile corresponding thereto.
    Type: Grant
    Filed: March 27, 2014
    Date of Patent: August 29, 2017
    Assignee: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Yibing Zhang, Limin Song, Geoff Keiser, Michael L. Hergenrother, Berne K. Stober, Patricia H. Kalamaras, Benjamin S. Umansky
  • Patent number: 9354183
    Abstract: System to detect coking in at least one component of refinery equipment is provided. The system includes a fiber optic assembly having at least one optical fiber operably coupled with the component, the fiber optic assembly further including a light source to transmit light having a known parameter through the optical fiber and a receiver to receive the light from the optical fiber, and a processor in communication with the fiber optic assembly to identify a shift in the parameter received by the receiver, the shift corresponding to an operating characteristic of the component. Method also provided for detecting coking using the system to detect coking disclosed herein.
    Type: Grant
    Filed: April 23, 2013
    Date of Patent: May 31, 2016
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Robert J. Chimenti, Brian D. Albert, Berne K. Stober, Christopher J. Wolfe
  • Patent number: 9266035
    Abstract: A feed device for a distillation tower has an annular, open-bottomed channel located around the periphery of the feed zone of the tower with an inner wall spaced from the inner curved wall of the tower and a top covering the channel to confer a generally inverted-U shape to the cross section of the channel. One or more tangential feed inlets are provided to admit a heated, mixed phase feed to the tower and direct the feed into and along the channel. One or more vapor scoops are provided for each feed inlet with the scoop(s) located on the inner wall of the channel at a sufficient distance along the channel from the inlet to permit cyclonic separation of vapor and liquid before the vapor in the feed from the inlet enters the scoop(s) and passes through a vapor exit port into the central core of the tower.
    Type: Grant
    Filed: July 25, 2013
    Date of Patent: February 23, 2016
    Assignee: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Vikram Singh, Brian D. Albert, Berne K. Stober
  • Publication number: 20150268078
    Abstract: Systems and methods for detecting coking in a wash bed of a vacuum pipe still with a sensing cable including an optical fiber sensor array aligned with a heating element disposed in the vessel. An optical signal interrogator is configured to measure a first temperature profile at a plurality of sensor locations to determine a flow distribution. An excitation source is configured to propagate at least one heat pulse through the heating element and the optical signal interrogator is configured to measure a second temperature profile corresponding to the heat pulse at the sensor locations. A control unit is configured to detect coking by determining one or more properties of the media exposed to the sensing cable at each of the plurality of sensor locations based on the second temperature profile corresponding thereto.
    Type: Application
    Filed: March 27, 2014
    Publication date: September 24, 2015
    Applicant: ExxonMobil Research and Engineering Company
    Inventors: Yibing Zhang, Limin Song, Geoff Keiser, Michael Louis Hergenrother, Berne K. Stober, Patricia H. Kalamaras, Benjamin Santiago Umansky
  • Patent number: 9028673
    Abstract: Systems and methods are provided for producing at least one low sulfur distillate fuel product with improved low temperature properties. A potential distillate fuel feed is initially hydrotreated to reduce sulfur and nitrogen levels in the feed to desired amounts. The hydrotreated effluent is then fractionated to form several fractions, including a light diesel/distillate fraction and a heavy diesel fraction. The heavy diesel fraction is then dewaxed to improve the cold flow properties of the heavy diesel fraction. The dewaxed heavy diesel fraction can be combined with the light diesel fraction, or the dewaxed heavy diesel fraction can be fractionated as well. Optionally, the heavy diesel fraction is dewaxed under conditions effective for producing a dewaxed fraction with a cloud point that is less than or equal to the cloud point of the light diesel/distillate fraction.
    Type: Grant
    Filed: November 5, 2012
    Date of Patent: May 12, 2015
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Stuart S. Shih, Berne K. Stober
  • Publication number: 20140357923
    Abstract: The invention generally relates to vapor-liquid separation, such as disengaging liquid from vapor containing C2-4 olefin. The invention also relates to processes for separating liquid and vapor, to equipment useful in such processes, and to the use of such equipment in vapor-liquid separation systems.
    Type: Application
    Filed: February 12, 2014
    Publication date: December 4, 2014
    Inventors: Thomas W. Pavia, Berne K. Stober, Terri S. Vander Pol
  • Publication number: 20140311953
    Abstract: System to detect coking in at least one component of refinery equipment is provided. The system includes a fiber optic assembly having at least one optical fiber operably coupled with the component, the fiber optic assembly further including a light source to transmit light having a known parameter through the optical fiber and a receiver to receive the light from the optical fiber, and a processor in communication with the fiber optic assembly to identify a shift in the parameter received by the receiver, the shift corresponding to an operating characteristic of the component. Method also provided for detecting coking using the system to detect coking disclosed herein.
    Type: Application
    Filed: April 23, 2013
    Publication date: October 23, 2014
    Applicant: ExxonMobil Research and Engineering Company
    Inventors: Robert J. CHIMENTI, Brian D. ALBERT, Berne K. STOBER, Christopher J. WOLFE
  • Patent number: 8852425
    Abstract: A divided wall column allows for fractionation of multiple streams while maintaining separate product qualities. Effluents from multiple stages of a reaction system can be processed in a single divided wall column. The divided wall column can produce multiple cuts from each separated area, as well as at least one output from a common area.
    Type: Grant
    Filed: November 15, 2010
    Date of Patent: October 7, 2014
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Benjamin S. Umansky, Berne K. Stober, Carlos N. Lopez, Stuart S. Shih, Timothy L. Hilbert, Andre T. Sims, William J. Tracy, III, Akira Murata, Paul W. Kamienski
  • Publication number: 20140294041
    Abstract: Systems and methods for determining the flow distribution of a fluid through a component with a sensing cable including an optical fiber sensor array aligned with a heating element disposed in the component. An excitation source is configured to propagate at least one heat pulse through the heating element along at least a portion of the sensing cable to affect an exchange of thermal energy between the heating element and the fluid exposed to the sensing cable. An optical signal is adapted to receive a signal from each of a plurality of sensor locations and measure a temperature profile corresponding to the heat pulse at the sensor locations. A control unit is configured to determine a flow of the fluid by determining one or more properties of the fluid exposed to the sensing cable at each of the plurality of sensor locations based on the temperature profile corresponding thereto.
    Type: Application
    Filed: March 27, 2014
    Publication date: October 2, 2014
    Applicant: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Yibing Zhang, Limin Song, Geoff Keiser, Michael L. Hergenrother, Berne K. Stober, Patricia H. Kalamaras, Benjamin S. Umansky
  • Publication number: 20140294040
    Abstract: Systems and methods for detecting a deposit in a vessel with a sensing cable including an optical fiber sensor array aligned with a heating element disposed in the vessel. An excitation source is configured to propagate at least one heat pulse through the heating element along at least a portion of the sensing cable to affect an exchange of thermal energy between the heating element and media exposed to the sensing cable. An optical signal interrogator is adapted to receive a signal from a plurality of sensor locations and configured to measure, a temperature profile corresponding to the heat pulse at the sensor locations. A control unit is configured to detect a deposit by determining one or more properties of the one or more media exposed to the sensing cable at each of the plurality of sensor locations based on the temperature profile corresponding thereto.
    Type: Application
    Filed: March 27, 2014
    Publication date: October 2, 2014
    Applicant: ExxonMobil Research and Engineering Company
    Inventors: Yibing Zhang, Limin Song, Geoff Keiser, Michael Louis Hergenrother, Berne K. Stober, Patricia H. Kalamaras
  • Publication number: 20140061024
    Abstract: A feed device for a distillation tower or column with a flash zone, wash zone and stripping zone has an annular, open-bottomed channel located around the periphery of the feed zone of the tower with an inner wall spaced from the inner curved wall of the tower and a top covering the channel to confer a generally inverted-U shape to the cross section of the channel. One or more tangential feed inlets are provided to admit a heated, mixed phase feed to the tower and direct the feed into and along the channel. One or more vapor scoops are provided for each feed inlet with the scoop(s) located on the inner wall of the channel, each at a sufficient distance along the channel from the inlet to permit cyclonic separation of vapor and liquid to take place before the vapor in the feed from the inlet enters the scoop(s) and passes through a vapor exit port into the central core of the tower. The tower is preferably used with a radial louvre baffle at the top of the stripping zone.
    Type: Application
    Filed: July 25, 2013
    Publication date: March 6, 2014
    Applicant: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Vikram SINGH, Brian D. ALBERT, Berne K. STOBER
  • Publication number: 20120085126
    Abstract: A distillation system for separating components fluid feed includes a stripper and a rectifier. The stripper includes an inlet to receive a feed of fluid a compressor in fluid communication with a more volatile portion of the fluid within the stripper to provide an output feed, and a reboiler in fluid communication with a less volatile portion of fluid within the stripper. The rectifier receives the output feed and includes a condenser in fluid communication with a more volatile portion of the output feed from the compressor, the condenser including an exit to remove at least one component from the more volatile portion of the output feed, and an outlet to recycle a less volatile portion of the output feed back to the stripper. Heat pipes transfer thermal energy from the rectifier to the stripper.
    Type: Application
    Filed: October 3, 2011
    Publication date: April 12, 2012
    Applicant: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Ramesh GUPTA, Walter WEISSMAN, Berne K. STOBER, Ian A. CODY
  • Patent number: 8083901
    Abstract: A de-entrainment device separates entrained liquid from vapor in a fluid stream that flows through a chimney tray in a distillation tower. The separated liquid is collected and shielded from the fluid stream to prevent re-entrainment of the liquid in the vapor flowing upward into the tower. The chimney tray includes risers with hats that have gutters to guide liquid toward the tray deck, channels to collect and drain liquid from the top of the hats to the tray deck, and baffles extending from the risers to shield the liquid collected on the tray deck from the vapor flow.
    Type: Grant
    Filed: February 19, 2008
    Date of Patent: December 27, 2011
    Assignee: ExxonMobil Research & Engineering Company
    Inventors: Arun K. Sharma, Theodore Sideropoulos, Berne K. Stober, Brian D. Albert, Alvin U. Chen, Vikram Singh
  • Publication number: 20110132803
    Abstract: A divided wall column allows for fractionation of multiple streams while maintaining separate product qualities. Effluents from multiple stages of a reaction system can be processed in a single divided wall column. The divided wall column can produce multiple cuts from each separated area, as well as at least one output from a common area.
    Type: Application
    Filed: November 15, 2010
    Publication date: June 9, 2011
    Applicant: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Benjamin S. Umansky, Berne K. Stober, Carlos N. Lopez, Stuart S. Shih, Timothy L. Hilbert, Andre T. Sims, William J. Tracy, III, Akira Murata, Paul W. Kamienski
  • Publication number: 20090101546
    Abstract: A combination of differently sized structured packings in the wash zone of distillation towers is provides advantages at high vapor rates. The use of a large crimp structured packing below a smaller crimp size structured packing is advantageous for vacuum crude unit service where fouling resistance is desirable and liquid entrainment into the wash zone is a problem at high vapor rates. The tower may be operated at high vapor flux rates or C 0.4 ft/sec or higher (0.12 m/sec). An unexpected characteristic of the combinations is that the entrainment increases only slowly with increasing vapor flux rate up to Cs values of at least 0.55 ft/sec (0.17 m.sec), as compared to other packings such as random packing, grid packing and combinations of grid packing with structured packing which allow entrainment to increase sharply at high vapor rates.
    Type: Application
    Filed: September 30, 2008
    Publication date: April 23, 2009
    Applicant: ExxonMobil Research and Engineering Company
    Inventors: Theodore Sideropoulos, Andrew P. Sullivan, Arun K. Sharma, Berne K. Stober, Vikram Singh, Brian A. Albert
  • Publication number: 20080202914
    Abstract: A de-entrainment device separates entrained liquid from vapor in a fluid stream that flows through a chimney tray in a distillation tower. The separated liquid is collected and shielded from the fluid stream to prevent re-entrainment of the liquid in the vapor flowing upward into the tower. The chimney tray includes risers with hats that have gutters to guide liquid toward the tray deck, channels to collect and drain liquid from the top of the hats to the tray deck, and baffles extending from the risers to shield the liquid collected on the tray deck from the vapor flow.
    Type: Application
    Filed: February 19, 2008
    Publication date: August 28, 2008
    Applicant: ExxonMobil Research and Engineering Company Law Department
    Inventors: Arun K. Sharma, Theodore Sideropoulos, Berne K. Stober, Brian D. Albert, Alvin U. Chen, Vikram Singh
  • Patent number: 6966548
    Abstract: This invention is directed to a cyclonic vapor/liquid contacting device and distillation or related mass transfer or heat transfer processes employing its use, such as fluid catalytic cracking. Liquid feed is introduced near the floor of the cyclone via downcomer or plenum. Vapor enters through sieve holes in the bottom of the cyclonic device. Near the floor are angled tabs or vanes that impart a spin to the vapor rising up through the floor. The tabs or vanes mix the liquid and vapor. The liquid is then thrown toward the cyclone wall, where it exits through slots in the wall. A second set of tabs or vanes, located about in the middle of the cyclone, imparts additional spin to the vapor and entrained liquid rising through the cyclone. This improves liquid collection by the cyclone, especially in cases where a heavy liquid load dampens the spin action of the vapor in the base of the cyclone.
    Type: Grant
    Filed: July 1, 2003
    Date of Patent: November 22, 2005
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: John Scott Buchanan, Berne K. Stober
  • Patent number: 6877725
    Abstract: This invention is directed to a cyclonic vapor/liquid contacting device and distillation or related mass transfer or heat transfer processes employing its use, such as fluid catalytic cracking. Liquid feed is introduced near the floor of the cyclone via downcomer or plenum. Vapor enters through sieve holes in the bottom of the cyclonic device. Near the floor are angled tabs or vanes that impart a spin to the vapor rising up through the floor. The tabs or vanes mix the liquid and vapor. The liquid is then thrown toward the cyclone wall, where it exits through slots in the wall. A second set of tabs or vanes, located about in the middle of the cyclone, imparts additional spin to the vapor and entrained liquid rising through the cyclone. This improves liquid collection by the cyclone, especially in cases where a heavy liquid load dampens the spin action of the vapor in the base of the cyclone.
    Type: Grant
    Filed: July 1, 2003
    Date of Patent: April 12, 2005
    Assignee: Mobil Oil Corporation
    Inventors: John Scott Buchanan, Berne K. Stober