Patents by Inventor Bernhard F. Cordts

Bernhard F. Cordts has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6774376
    Abstract: A wafer holder assembly includes first and second main structural members from which first and second wafer-holding arms extend. The first arm is secured to the main structural members by a graphite distal retaining member. The second arm is pivotally biased to a wafer-hold position by a graphite bias member. This arrangement provides a conductive path from the wafer to the assembly for inhibiting electrical discharges from the wafer during the ion implantation process. The assembly can further include additional graphite retaining members for maintaining the structural integrity of the assembly during the extreme conditions associated with SIMOX wafer processing without the need for potentially wafer-contaminating adhesives and conventional fasteners. The wafer-contacting pins at the distal end of the arms can be formed from silicon. The silicon pins can be coated with titanium nitride to enhance electrical contact with the wafer and to provide an abrasion resistant surface.
    Type: Grant
    Filed: May 29, 2002
    Date of Patent: August 10, 2004
    Assignee: IBIS Technology Corporation
    Inventors: Bernhard F. Cordts, III, Julian G. Blake
  • Publication number: 20030052282
    Abstract: A wafer holder assembly includes first and second main structural members from which first and second wafer-holding arms extend. The first arm is secured to the main structural members by a graphite distal retaining member. The second arm is pivotally biased to a wafer-hold position by a graphite bias member. This arrangement provides a conductive path from the wafer to the assembly for inhibiting electrical discharges from the wafer during the ion implantation process. The assembly can further include additional graphite retaining members for maintaining the structural integrity of the assembly during the extreme conditions associated with SIMOX wafer processing without the need for potentially wafer-contaminating adhesives and conventional fasteners. The wafer-contacting pins at the distal end of the arms can be formed from silicon. The silicon pins can be coated with titanium nitride to enhance electrical contact with the wafer and to provide an abrasion resistant surface.
    Type: Application
    Filed: May 29, 2002
    Publication date: March 20, 2003
    Applicant: IBIS TECHNOLOGY CORPORATION
    Inventors: Bernhard F. Cordts, Julian G. Blake
  • Patent number: 6452195
    Abstract: A wafer holder assembly includes first and second main structural members from which first and second wafer-holding arms extend. The first arm is secured to the main structural members by a graphite distal retaining member. The second arm is pivotally biased to a wafer-hold position by a graphite bias member. This arrangement provides a conductive path from the wafer to the assembly for inhibiting electrical discharges from the wafer during the ion implantation process. The assembly can further include additional graphite retaining members for maintaining the structural integrity of the assembly during the extreme conditions associated with SIMOX wafer processing without the need for potentially wafer-contaminating adhesives and conventional fasteners. The wafer-contacting pins at the distal end of the arms can be formed from silicon. The silicon pins can be coated with titanium nitride to enhance electrical contact with the wafer and to provide an abrasion resistant surface.
    Type: Grant
    Filed: August 18, 1999
    Date of Patent: September 17, 2002
    Assignee: Ibis Technology Corporation
    Inventors: Theodore H. Smick, Robert S. Andrews, Bernhard F. Cordts, III
  • Patent number: 6433342
    Abstract: A wafer holder assembly includes first and second main structural members from which first and second wafer-holding arms extend. The first arm is secured to the main structural members by a graphite distal retaining member. The second arm is pivotally biased to a wafer-hold position by a graphite bias member. This arrangement provides a conductive path from the wafer to the assembly for inhibiting electrical discharges from the wafer during the ion implantation process. The assembly can further include additional graphite retaining members for maintaining the structural integrity of the assembly during the extreme conditions associated with SIMOX wafer processing without the need for potentially wafer-contaminating adhesives and conventional fasteners. The wafer-contacting pins at the distal end of the arms can be formed from silicon. The silicon pins can be coated with titanium nitride to enhance electrical contact with the wafer and to provide an abrasion resistant surface.
    Type: Grant
    Filed: August 18, 1999
    Date of Patent: August 13, 2002
    Assignee: Ibis Technology Corporation
    Inventors: Bernhard F. Cordts, III, Julian G. Blake
  • Patent number: 6423975
    Abstract: A wafer holder assembly includes first and second main structural members from which first and second wafer-holding arms extend. The first arm is secured to the main structural members by a graphite distal retaining member. The second arm is pivotally biased to a wafer-hold position by a graphite bias member. This arrangement provides a conductive path from the wafer to the assembly for inhibiting electrical discharges from the wafer during the ion implantation process. The assembly can further include additional graphite retaining members for maintaining the structural integrity of the assembly during the extreme conditions associated with SIMOX wafer processing without the need for potentially wafer-contaminating adhesives and conventional fasteners. The wafer-contacting pins at the distal end of the arms can be formed from silicon. The silicon pins can be coated with titanium nitride to enhance electrical contact with the wafer and to provide an abrasion resistant surface.
    Type: Grant
    Filed: August 18, 1999
    Date of Patent: July 23, 2002
    Assignee: Ibis Technology, Inc.
    Inventors: Theodore H. Smick, Geoffrey Ryding, Bernhard F. Cordts, III, Robert S. Andrews
  • Patent number: 6155436
    Abstract: A wafer holder assembly includes first and second main structural members from which first and second wafer-holding arms extend. The first arm is secured to the main structural members by a graphite distal retaining member. The second arm is pivotally biased to a wafer-hold position by a graphite bias member. This arrangement provides a conductive path from the wafer to the assembly for inhibiting electrical discharges from the wafer during the ion implantation process. The assembly can further include additional graphite retaining members for maintaining the structural integrity of the assembly during the extreme conditions associated with SIMOX wafer processing without the need for potentially wafer-contaminating adhesives and conventional fasteners. The wafer-contacting pins at the distal end of the arms can be formed from silicon. The silicon pins can be coated with titanium nitride to enhance electrical contact with the wafer and to provide an abrasion resistant surface.
    Type: Grant
    Filed: August 18, 1999
    Date of Patent: December 5, 2000
    Assignee: Ibis Technology Corporation
    Inventors: Theodore H. Smick, Robert S. Andrews, Bernhard F. Cordts, III
  • Patent number: 4714641
    Abstract: A ferromagnetic film for magnetic recording comprises a copper substrate having particles of iron and iron oxides dispersed in the surface layer of the copper. The particles have maximum dimensions in the range between 50 and 500 Angstroms. The ferromagnetic film can be formed by ion implantation of iron ions into the copper substrate followed by heat treatment to permit growth of ferromagnetic particles to the desired size. As an alternative to ion implantation, the iron can be deposited on the copper substrate by sputtering or evaporation and mixed with the copper by ion beam mixing.
    Type: Grant
    Filed: March 4, 1985
    Date of Patent: December 22, 1987
    Assignee: Varian Associates, Inc.
    Inventor: Bernhard F. Cordts
  • Patent number: 4520040
    Abstract: A ferromagnetic film for magnetic recording comprises a copper substrate having particles of iron and iron oxides dispersed in the surface layer of the copper. The particles have maximum dimensions in the range between 50 and 500 Angstroms. The ferromagnetic film can be formed by ion implantation of iron ions into the copper substrate followed by heat treatment to permit growth of ferromagnetic particles to the desired size. As an alternative to ion implantation, the iron can be deposited on the copper substrate by sputtering or evaporation and mixed with the copper by ion beam mixing.
    Type: Grant
    Filed: December 15, 1983
    Date of Patent: May 28, 1985
    Assignee: Varian Associates, Inc.
    Inventor: Bernhard F. Cordts