Patents by Inventor Bernhard Grill

Bernhard Grill has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8296159
    Abstract: An apparatus calculates a number of spectral envelopes to be derived by a spectral band replication (SBR) encoder, wherein the SBR encoder is adapted to encode an audio signal using a plurality of sample values within a predetermined number of subsequent time portions in an SBR frame extending from an initial time to a final time, the predetermined number of subsequent time portions being arranged in a time sequence given by the audio signal. The apparatus has a decision value calculator for determining a decision value, the decision value measuring a deviation in spectral energy distributions of a pair of neighboring time portions. The apparatus further has a detector for detecting a violation of a threshold by the decision value and a processor for determining a first envelope border between the pair of neighboring time portions when the violation of the threshold is detected.
    Type: Grant
    Filed: January 11, 2011
    Date of Patent: October 23, 2012
    Assignee: Fraunhofer-Gesellschaft zur Foerderung der Angewandten Forschung E.V.
    Inventors: Max Neuendorf, Bernhard Grill, Ulrich Kraemer, Markus Multrus, Harald Popp, Nikolaus Rettelbach, Frederik Nagel, Markus Lohwasser, Marc Gayer, Manuel Jander, Virgilio Bacigalupo
  • Publication number: 20120253797
    Abstract: In an embodiment, bitstream elements of sub-frames are encoded differentially to a global gain value so that a change of the global gain value results in an adjustment of an output level of the decoded representation of the audio content. Concurrently, the differential coding saves bits. Even further, the differential coding enables the lowering of the burden of globally adjusting the gain of an encoded bitstream. In another embodiment, a global gain control across CELP coded frames and transform coded frames is achieved by co-controlling the gain of the codebook excitation of the CELP codec, along with a level of the transform or inverse transform of the transform coded frames. In another embodiment, the gain value determination in CELP coding is performed in the weighted domain of the excitation signal.
    Type: Application
    Filed: April 18, 2012
    Publication date: October 4, 2012
    Inventors: Ralf Geiger, Guillaume Fuchs, Markus Multrus, Bernhard Grill
  • Patent number: 8275626
    Abstract: An apparatus for decoding an encoded audio signal having first and second portions encoded in accordance with first and second encoding algorithms, respectively, BWE parameters for the first and second portions and a coding mode information indicating a first or a second decoding algorithm, includes first and second decoders, a BWE module and a controller. The decoders decode portions in accordance with decoding algorithms for time portions of the encoded signal to obtain decoded signals. The BWE module has a controllable crossover frequency and is configured for performing a bandwidth extension algorithm using the first decoded signal and the BWE parameters for the first portion, and for performing a bandwidth extension algorithm using the second decoded signal and the bandwidth extension parameter for the second portion. The controller controls the crossover frequency for the BWE module in accordance with the coding mode information.
    Type: Grant
    Filed: January 11, 2011
    Date of Patent: September 25, 2012
    Assignee: Fraunhofer-Gesellschaft zur Foerderung der Angewandten Forschung E.V.
    Inventors: Max Neuendorf, Bernhard Grill, Ulrich Kraemer, Markus Multrus, Harald Popp, Nikolaus Rettelbach, Frederik Nagel, Markus Lohwasser, Marc Gayer, Manuel Jander, Virgilio Bacigalupo
  • Patent number: 8255228
    Abstract: An efficient encoded representation of a first and a second input audio signal can be derived using correlation information indicating a correlation between the first and the second input audio signals, when a signal characterization information, indicating at least a first or a second, different characteristic of the input audio signal is additionally considered. Phase information indicating a phase relation between the first and the second input audio signals is derived, when the input audio signals have the first characteristic. The phase information and a correlation measure are included into the encoded representation when the input audio signals have the first characteristic, and only the correlation information is included into the encoded representation when the input audio signals have the second characteristic.
    Type: Grant
    Filed: January 11, 2011
    Date of Patent: August 28, 2012
    Assignee: Fraunhofer-Gesellschaft zur Foerderung der Angewandten Forschung E.V.
    Inventors: Johannes Hilpert, Bernhard Grill, Matthias Neusinger, Julien Robilliard, Maria Luis-Valero
  • Publication number: 20120134160
    Abstract: A light diffuser having a holder device and an inflatable, at least partially light-transmissive box that can be attached to the holder device. The holder device includes an adapter ring formed by a light-transmissive disc, in particular a glass disc, for fastening to a spotlight and for connecting the inflatable box in a substantially airtight manner. The end of the inflatable box can be connected to the adapter ring which is surrounded by an airtight fastening ring that can be tensioned against a radially extending sealing surface on the adapter ring by at least three quick-closures, distributed about the circumference.
    Type: Application
    Filed: February 22, 2010
    Publication date: May 31, 2012
    Applicant: LICHT-TECHNIK VERTRIEBS GMBH HAGENBACH & GRILL
    Inventors: Uwe Hagenbach, Bernhard Grill, Manfred Amling
  • Publication number: 20120010880
    Abstract: An apparatus for generating a representation of a bandwidth-extended signal on the basis of an input signal representation includes a phase vocoder configured to obtain values of a spectral domain representation of a first patch of the bandwidth-extended signal on the basis of the input signal representation. The apparatus also includes a value copier configured to copy a set of values of the spectral domain representation of the first patch, which values are provided by the phase vocoder, to obtain a set of values of a spectral domain representation of a second patch, wherein the second patch is associated with higher frequencies than the first patch. The apparatus is configured to obtain the representation of the bandwidth-extended signal using the values of the spectral domain representation of the first patch and the values of the spectral domain representation of the second patch.
    Type: Application
    Filed: April 1, 2010
    Publication date: January 12, 2012
    Inventors: Frederik Nagel, Max Neuendorf, Nikolaus Rettelbach, Jeremie Lecomte, Markus Multrus, Bernhard Grill, Sascha Disch
  • Patent number: 8036903
    Abstract: An embodiment of an analysis filterbank for filtering a plurality of time domain input frames, wherein an input frame comprises a number of ordered input samples, comprises a windower configured to generate a plurality of windowed frames, wherein a windowed frame comprises a plurality of windowed samples, wherein the windower is configured to process the plurality of input frames in an overlapping manner using a sample advance value, wherein the sample advance value is less than the number of ordered input samples of an input frame divided by two, and a time/frequency converter configured to provide an output frame comprising a number of output values, wherein an output frame is a spectral representation of a windowed frame.
    Type: Grant
    Filed: May 4, 2007
    Date of Patent: October 11, 2011
    Assignee: Fraunhofer-Gesellschaft zur Foerderung der angewandten Forschung e.V.
    Inventors: Bernhard Grill, Markus Schnell, Ralf Geiger, Gerald Schuller
  • Patent number: 8037114
    Abstract: In the transition into the logarithmic range, not the entire bit width of the result linearly dependent upon the square of the value must be considered. Rather, it is possible to scale the result of a value with x bits such that a representation with less than x bits of the result is sufficient to receive the logarithmic representation based thereon. The effect of the scaling factor on the resulting logarithmic representation may be compensated for by adding or subtracting a correction value received by the logarithm function applied to the scaling factor to or from the scaled logarithmic representation without any loss of dynamics. This way, a method and an apparatus for creating a representation of a result linearly dependent upon a square of a value are provided so that the calculation is simple and/or possible with little hardware expenditure.
    Type: Grant
    Filed: June 13, 2007
    Date of Patent: October 11, 2011
    Assignee: Fraunhofer-Gesellschaft zur Foerderung der Angewandten Forschung E.V.
    Inventors: Marc Gayer, Manfred Lutzky, Markus Lohwasser, Sascha Disch, Johannes Hilpert, Stefan Geyersberger, Bernhard Grill
  • Publication number: 20110238425
    Abstract: An audio encoder for encoding an audio signal has a first coding branch, the first coding branch comprising a first converter for converting a signal from a time domain into a frequency domain. Furthermore, the audio encoder has a second coding branch comprising a second time/frequency converter. Additionally, a signal analyzer for analyzing the audio signal is provided. The signal analyzer, on the hand, determines whether an audio portion is effective in the encoder output signal as a first encoded signal from the first encoding branch or as a second encoded signal from a second encoding branch. On the other hand, the signal analyzer determines a time/frequency resolution to be applied by the converters when generating the encoded signals. An output interface includes, in addition to the first encoded signal and the second encoded signal, a resolution information identifying the resolution used by the first time/frequency converter and used by the second time/frequency converter.
    Type: Application
    Filed: April 6, 2011
    Publication date: September 29, 2011
    Inventors: Max Neuendorf, Stefan Bayer, Jérémie Lecomte, Guillaume Fuchs, Julien Robilliard, Nikolaus Rettelbach, Frederik Nagel, Ralf Geiger, Markus Multrus, Bernhard Grill, Philippe Gournay, Redwan Salami
  • Publication number: 20110200198
    Abstract: An audio encoder has a common preprocessing stage, an information sink based encoding branch such as spectral domain encoding branch, a information source based encoding branch such as an LPC-domain encoding branch and a switch for switching between these branches at inputs into these branches or outputs of these branches controlled by a decision stage. An audio decoder has a spectral domain decoding branch, an LPC-domain decoding branch, one or more switches for switching between the branches and a common post-processing stage for post-processing a time-domain audio signal for obtaining a post-processed audio signal.
    Type: Application
    Filed: January 11, 2011
    Publication date: August 18, 2011
    Inventors: Bernhard Grill, Stefan Bayer, Guillaume Fuchs, Stefan Geyersberger, Ralf Geiger, Johannes Hilpert, Ulrich Kraemer, Jeremie Lecomte, Markus Multrus, Max Neuendorf, Harald Popp, Nikolaus Rettelbach, Frederik Nagel, Sascha Disch, Juergen Herre, Yoshikazu Yokotani, Stefan Wabnik, Gerald Schuller, Jens Hirschfeld
  • Publication number: 20110200125
    Abstract: In a method for encoding a symbol it is determined whether the symbol can be encoded by a codeword of a first codebook. In case this is true, the appropriate codeword for the symbol is selected from the first codebook. Otherwise, a codeword is selected from the first codebook indicating that the symbol cannot be encoded by a codeword of the first codebook and the symbol is split into a plurality of first sub-symbols and for at least one of the first sub-symbols a codeword is selected from a second codebook. Also a corresponding method for decoding is described.
    Type: Application
    Filed: January 11, 2011
    Publication date: August 18, 2011
    Inventors: Markus Multrus, Nikolaus Rettelbach, Stefan Bayer, Bernhard Grill, Manuel Jander
  • Publication number: 20110202352
    Abstract: An apparatus for generating bandwidth extension output data for an audio signal has a noise floor measurer, a signal energy characterizer and a processor. The audio signal has components in a first frequency band and components in a second frequency band, the bandwidth extension output data are adapted to control a synthesis of the components in the second frequency band. The noise floor measurer measures noise floor data of the second frequency band for a time portion of the audio signal. The signal energy characterizer derives energy distribution data, the energy distribution data characterizing an energy distribution in a spectrum of the time portion of the audio signal. The processor combines the noise floor data and the energy distribution data to obtain the bandwidth extension output data.
    Type: Application
    Filed: January 11, 2011
    Publication date: August 18, 2011
    Inventors: Max Neuendorf, Bernhard Grill, Ulrich Kraemer, Markus Multrus, Harald Popp, Nikolaus Rettelbach, Frederik Nagel, Markus Lohwasser, Marc Gayer, Manuel Jander, Virgilio Bacigalupo
  • Publication number: 20110202358
    Abstract: An apparatus calculates a number of spectral envelopes to be derived by a spectral band replication (SBR) encoder, wherein the SBR encoder is adapted to encode an audio signal using a plurality of sample values within a predetermined number of subsequent time portions in an SBR frame extending from an initial time to a final time, the predetermined number of subsequent time portions being arranged in a time sequence given by the audio signal. The apparatus has a decision value calculator for determining a decision value, the decision value measuring a deviation in spectral energy distributions of a pair of neighboring time portions. The apparatus further has a detector for detecting a violation of a threshold by the decision value and a processor for determining a first envelope border between the pair of neighboring time portions when the violation of the threshold is detected.
    Type: Application
    Filed: January 11, 2011
    Publication date: August 18, 2011
    Inventors: Max Neuendorf, Bernhard Grill, Ulrich Kraemer, Markus Multrus, Harald Popp, Nikolaus Rettelbach, Frederik Nagel, Markus Lohwasser, Marc Gayer, Manuel Jander, Virgilio Bacigalupo
  • Publication number: 20110202353
    Abstract: An apparatus for decoding an encoded audio signal having first and second portions encoded in accordance with first and second encoding algorithms, respectively, BWE parameters for the first and second portions and a coding mode information indicating a first or a second decoding algorithm, includes first and second decoders, a BWE module and a controller. The decoders decode portions in accordance with decoding algorithms for time portions of the encoded signal to obtain decoded signals. The BWE module has a controllable crossover frequency and is configured for performing a bandwidth extension algorithm using the first decoded signal and the BWE parameters for the first portion, and for performing a bandwidth extension algorithm using the second decoded signal and the bandwidth extension parameter for the second portion. The controller controls the crossover frequency for the BWE module in accordance with the coding mode information.
    Type: Application
    Filed: January 11, 2011
    Publication date: August 18, 2011
    Inventors: Max Neuendorf, Bernhard Grill, Ulrich Kraemer, Markus Multrus, Harald Popp, Nikolaus Rettelbach, Frederick Nagel, Markus Lohwasser, Marc Gayer, Manuel Jander, Virgilio Bacigalupo
  • Publication number: 20110202355
    Abstract: An apparatus for encoding includes a first domain converter, a switchable bypass, a second domain converter, a first processor and a second processor to obtain an encoded audio signal having different signal portions represented by coded data in different domains, which have been coded by different coding algorithms. Corresponding decoding stages in the decoder together with a bypass for bypassing a domain converter allow the generation of a decoded audio signal with high quality and low bit rate.
    Type: Application
    Filed: January 14, 2011
    Publication date: August 18, 2011
    Inventors: Bernhard Grill, Stefan Bayer, Guillaume Fuchs, Stefan Geyersberger, Ralf Geiger, Johannes Hilpert, Ulrich Kraemer, Jeremie Lecomte, Markus Multrus, Max Neuendorf, Harald Popp, Nikolaus Rettelbach, Roch Lefebvre, Bruno Bessette, Jimmy Lapierre, Philippe Gournay, Redwan Salami
  • Publication number: 20110202354
    Abstract: An audio encoder has a first information sink oriented encoding branch such as a spectral domain encoding branch, a second information source or SNR oriented encoding branch such as an LPC-domain encoding branch, and a switch for switching between the first encoding branch and the second encoding branch, wherein the second encoding branch has a converter into a specific domain different from the spectral domain such as an LPC analysis stage generating an excitation signal, and wherein the second encoding branch furthermore has a specific domain coding branch such as LPC domain processing branch, and a specific spectral domain coding branch such as LPC spectral domain processing branch, and an additional switch for switching between the specific domain coding branch and the specific spectral domain coding branch.
    Type: Application
    Filed: January 11, 2011
    Publication date: August 18, 2011
    Inventors: Bernhard Grill, Roch Lefebvre, Bruno Bessette, Jimmy Lapierre, Philippe Gournay, Redwan Salami, Stefan Bayer, Guillaume Fuchs, Stefan Geyersberger, Ralf Geiger, Johannes Hilpert, Ulrich Kraemer, Jeremie Lecomte, Markus Multrus, Max Neuendorf, Harald Popp, Nikolaus Rettelbach
  • Publication number: 20110191101
    Abstract: An apparatus for processing an audio signal to obtain control information for a speech enhancement filter has a feature extractor for extracting at least one feature per frequency band of a plurality of frequency bands of a short-time spectral representation of a plurality of short-time spectral representations, where the at least one feature represents a spectral shape of the short-time spectral representation in the frequency band. The apparatus additionally has a feature combiner for combining the at least one feature for each frequency band using combination parameters to obtain the control information for the speech enhancement filter for a time portion of the audio signal. The feature combiner can use a neural network regression method, which is based on combination parameters determined in a training phase for the neural network.
    Type: Application
    Filed: February 2, 2011
    Publication date: August 4, 2011
    Inventors: Christian Uhle, Oliver Hellmuth, Bernhard Grill, Falko Ridderbusch
  • Publication number: 20110170711
    Abstract: An encoder for providing an audio stream on the basis of a transform-domain representation of an input audio signal includes a quantization error calculator configured to determine a multi-band quantization error over a plurality of frequency bands of the input audio signal for which separate band gain information is available. The encoder also includes an audio stream provider for providing the audio stream such that the audio stream includes information describing an audio content of the frequency bands and information describing the multi-band quantization error. A decoder for providing a decoded representation of an audio signal on the basis of an encoded audio stream representing spectral components of frequency bands of the audio signal includes a noise filler for introducing noise into spectral components of a plurality of frequency bands to which separate frequency band gain information is associated on the basis of a common multi-band noise intensity value.
    Type: Application
    Filed: January 11, 2011
    Publication date: July 14, 2011
    Inventors: Nikolaus Rettelbach, Bernhard Grill, Guillaume Fuchs, Stefan Geyersberger, Markus Multrus, Harald Popp, Juergen Herre, Stefan Wabnik, Gerald Schuller, Jens Hirschfeld
  • Publication number: 20110173010
    Abstract: An audio encoder for encoding audio samples has a first time domain aliasing introducing encoder configured to decode audio samples in a first encoding domain and having a first framing rule, a start window and a stop window. The audio encoder further has a second encoder configured to encode samples in a second encoding domain and having a predetermined frame size number of audio samples, and a coding warm-up period number of audio samples, the second encoder having a different second framing rule, a frame of the second encoder being an encoded representation of a number of successive audio samples that is equal to the predetermined frame size number of audio samples. The audio encoder further has a controller switching from the first to the second encoder and for modifying the second framing rule or for modifying the start or the stop window of the first encoder.
    Type: Application
    Filed: January 11, 2011
    Publication date: July 14, 2011
    Inventors: Jeremie Lecomte, Philippe Gournay, Stefan Bayer, Markus Multrus, Bruno Bessette, Bernhard Grill
  • Publication number: 20110173006
    Abstract: An audio signal synthesizer generates a synthesis audio signal having a first frequency band and a second synthesized frequency band derived from the first frequency band and comprises a patch generator, a spectral converter, a raw signal processor and a combiner. The patch generator performs at least two different patching algorithms, each patching algorithm generating a raw signal. The patch generator is adapted to select one of the at least two different patching algorithms in response to a control information. The spectral converter converts the raw signal into a raw signal spectral representation. The raw signal processor processes the raw signal spectral representation in response to spectral domain spectral band replication parameters to obtain an adjusted raw signal spectral representation.
    Type: Application
    Filed: January 11, 2011
    Publication date: July 14, 2011
    Inventors: Frederik Nagel, Sascha Disch, Nikolaus Rettelbach, Max Neuendorf, Bernhard Grill, Ulrich Kraemer, Stefan Wabnik