Patents by Inventor Bernhard Schrenk

Bernhard Schrenk has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11128445
    Abstract: A method creates and distributes cryptographic keys for securing communication at two terminals. Signals for creating correlated values in the two terminals are distributed via a first communication channel burdened with error, and the correlated values are present as keys. A checksum is formed on the basis of the first key present in the first terminal and the checksum is transferred to the second terminal via a second communication channel. A second checksum is formed on the basis of the second key present, and information derived from the two checksums is transferred via the second communication channel to a server. Based on the information derived from the checksums, the server determines a correction value, which, when applied to one or both keys, brings the keys into correspondence. The correction value is transferred to one or both terminals via the second communication channel and is applied to one or both keys.
    Type: Grant
    Filed: March 13, 2018
    Date of Patent: September 21, 2021
    Assignee: AIT Austrian Institute of Technology GmbH
    Inventors: Stephan Krenn, Thomas Loruesner, Bernhard Schrenk, Christoph Pacher
  • Patent number: 10985842
    Abstract: A method for receiving a modulated receive signal, with a transmission unit having a laser and an electro-absorption modulator. The received optical receive signal is directed towards the laser; due to the irradiance of the optical receive signal onto the laser, the optical frequency of the light radiated from the laser is adapted to and/or aligned with the optical frequency of the received optical receive signal; the light radiated from the laser and the optical receive signal received via the optical waveguide are overlapped in the electro-absorption modulator; the thus-created overlapping signal from the electro-absorption modulator is converted into an electrical receive signal, in particular into an electrical current signal; and a receive signal is provided which corresponds to the electrical receive signal or is derived from same.
    Type: Grant
    Filed: July 6, 2018
    Date of Patent: April 20, 2021
    Assignee: AIT Austrian Institute of Technology GmbH
    Inventor: Bernhard Schrenk
  • Patent number: 10928273
    Abstract: A method detects discontinuities in an optical channel using two laser units that respectively have a laser and an electroabsorption modulator. The reference frequencies of the two lasers have a predetermined reference frequency difference. The optical ports of the electroabsorption modulator are fed to the two inputs of a polarization beam splitter and the output of the polarization beam splitter is connected to the optical channel. A test pulse is applied simultaneously to the two electroabsorption modulators and laser light from the lasers is thus transmitted through the respective electroabsorption modulators during the time of the test pulse. The test pulse is divided into two time periods, and during the first time period the lasers are operated with their respective reference frequency, and during the second time period the emission frequencies of the lasers are detuned with respect to the reference frequencies, by a predetermined detuning frequency difference.
    Type: Grant
    Filed: October 3, 2019
    Date of Patent: February 23, 2021
    Assignee: AIT Austrian Institute of Technology GmbH
    Inventor: Bernhard Schrenk
  • Patent number: 10911147
    Abstract: A system for data transmission has a transmitter and a receiver connected by an optical channel. The transmitter has a transmitter laser and a transmitter-side electroabsorption modulator with an optical output. An electrical data input of the transmitter is connected to an electrical modulation terminal of the transmitter-side electroabsorption modulator. The receiver has a receiver laser and a receiver-side electroabsorption modulator with an optical output forming the input of the receiver. An electrical data output of the receiver is connected to the electrical modulation terminal of the receiver-side electroabsorption modulator. The transmitter and receiver lasers are detunable by specification of a physical variable, each provided by a respective control unit. The control units are synchronized and they specify the same signal at their outputs for establishing the physical variable for establishing the laser frequency.
    Type: Grant
    Filed: April 14, 2020
    Date of Patent: February 2, 2021
    Assignee: AIT Austrian Institute of Technology GmbH
    Inventor: Bernhard Schrenk
  • Publication number: 20200343978
    Abstract: A system for data transmission has a transmitter and a receiver connected by an optical channel. The transmitter has a transmitter laser and a transmitter-side electroabsorption modulator with an optical output. An electrical data input of the transmitter is connected to an electrical modulation terminal of the transmitter-side electroabsorption modulator. The receiver has a receiver laser and a receiver-side electroabsorption modulator with an optical output forming the input of the receiver. An electrical data output of the receiver is connected to the electrical modulation terminal of the receiver-side electroabsorption modulator. The transmitter and receiver lasers are detunable by specification of a physical variable, each provided by a respective control unit. The control units are synchronized and they specify the same signal at their outputs for establishing the physical variable for establishing the laser frequency.
    Type: Application
    Filed: April 14, 2020
    Publication date: October 29, 2020
    Inventor: BERNHARD SCHRENK
  • Publication number: 20200343977
    Abstract: A method for receiving a modulated receive signal, with a transmission unit having a laser and an electro-absorption modulator. The received optical receive signal is directed towards the laser; due to the irradiance of the optical receive signal onto the laser, the optical frequency of the light radiated from the laser is adapted to and/or aligned with the optical frequency of the received optical receive signal; the light radiated from the laser and the optical receive signal received via the optical waveguide are overlapped in the electro-absorption modulator; the thus-created overlapping signal from the electro-absorption modulator is converted into an electrical receive signal, in particular into an electrical current signal; and a receive signal is provided which corresponds to the electrical receive signal or is derived from same.
    Type: Application
    Filed: July 6, 2018
    Publication date: October 29, 2020
    Inventor: BERNHARD SCHRENK
  • Publication number: 20200110003
    Abstract: A method detects discontinuities in an optical channel using two laser units that respectively have a laser and an electroabsorption modulator. The reference frequencies of the two lasers have a predetermined reference frequency difference. The optical ports of the electroabsorption modulator are fed to the two inputs of a polarization beam splitter and the output of the polarization beam splitter is connected to the optical channel. A test pulse is applied simultaneously to the two electroabsorption modulators and laser light from the lasers is thus transmitted through the respective electroabsorption modulators during the time of the test pulse. The test pulse is divided into two time periods, and during the first time period the lasers are operated with their respective reference frequency, and during the second time period the emission frequencies of the lasers are detuned with respect to the reference frequencies, by a predetermined detuning frequency difference.
    Type: Application
    Filed: October 3, 2019
    Publication date: April 9, 2020
    Inventor: BERNHARD SCHRENK
  • Publication number: 20200052891
    Abstract: A method creates and distributes cryptographic keys for securing communication at two terminals. Signals for creating correlated values in the two terminals are distributed via a first communication channel burdened with error, and the correlated values are present as keys. A checksum is formed on the basis of the first key present in the first terminal and the checksum is transferred to the second terminal via a second communication channel. A second checksum is formed on the basis of the second key present, and information derived from the two checksums is transferred via the second communication channel to a server. Based on the information derived from the checksums, the server determines a correction value, which, when applied to one or both keys, brings the keys into correspondence. The correction value is transferred to one or both terminals via the second communication channel and is applied to one or both keys.
    Type: Application
    Filed: March 13, 2018
    Publication date: February 13, 2020
    Inventors: STEPHAN KRENN, THOMAS LORUENSER, BERNHARD SCHRENK, CHRISTOPH PACHER
  • Patent number: 8396375
    Abstract: A method for enabling bidirectional data communication using a single optical carrier and a single laser source with the aid of an integrated, colorless demodulator and detector for frequency modulated signals, and a reflective modulator. A receiving optical system holds a technique for demodulation and detection of optical frequency modulated signals, enabling remodulation of the incoming signal to establish bidirectional communication with the transmitting optical system, without introducing a high penalty. A colorless demodulator and detector, which provides the functionality of a periodic filtering device for demodulation of the downstream, and also detection capability. The principle of operation of the CDD relies on the introduction of a comb transfer function with the help of a Semiconductor Optical Amplifier, by providing a reflected feedback signal to the CDD's active element.
    Type: Grant
    Filed: February 18, 2010
    Date of Patent: March 12, 2013
    Assignee: Universitat Politecnica de Catalunya
    Inventors: Bernhard Schrenk, José Antonio Lázaro Villa, Christophe Kazmierski, Josep Joan Prat Gomà
  • Publication number: 20110200333
    Abstract: A method for enabling bidirectional data communication using a single optical carrier and a single laser source with the aid of an integrated, colorless demodulator and detector for frequency modulated signals, and a reflective modulator. A receiving optical system holds a technique for demodulation and detection of optical frequency modulated signals, enabling remodulation of the incoming signal to establish bidirectional communication with the transmitting optical system, without introducing a high penalty. A colorless demodulator and detector, which provides the functionality of a periodic filtering device for demodulation of the downstream, and also detection capability. The principle of operation of the CDD relies on the introduction of a comb transfer function with the help of a Semiconductor Optical Amplifier, by providing a reflected feedback signal to the CDD's active element.
    Type: Application
    Filed: February 18, 2010
    Publication date: August 18, 2011
    Applicant: UNIVERSITAT POLITECNICA DE CATALUNYA (UPC)
    Inventors: Bernhard Schrenk, José Antonio Lázaro Villa, Christophe Kazmierski, Josep Joan Prat Gomá