Patents by Inventor Bernhard Zimmermann
Bernhard Zimmermann has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 12110552Abstract: The invention provides methods for simultaneously amplifying multiple nucleic acid regions of interest in one reaction volume as well as methods for selecting a library of primers for use in such amplification methods. The invention also provides library of primers with desirable characteristics, such as minimal formation of amplified primer dimers or other non-target amplicons.Type: GrantFiled: April 23, 2020Date of Patent: October 8, 2024Assignee: Natera, Inc.Inventors: Matthew Rabinowitz, Matthew Micah Hill, Bernhard Zimmermann, Johan Baner, George Gemelos, Milena Banjevic, Allison Ryan, Styrmir Sigurjonsson, Zachary Demko
-
Publication number: 20240327919Abstract: The invention provides methods for simultaneously amplifying multiple nucleic acid regions of interest in one reaction volume as well as methods for selecting a library of primers for use in such amplification methods. The invention also provides library of primers with desirable characteristics, such as minimal formation of amplified primer dimers or other non-target amplicons.Type: ApplicationFiled: June 18, 2024Publication date: October 3, 2024Applicant: Natera, Inc.Inventors: MATTHEW RABINOWITZ, Matthew Micah HILL, Bernhard ZIMMERMANN, Johan BANER, George GEMELOS, Milena Eser BANJEVIC, Allison RYAN, Styrmir SIGURJONSSON, Zachary DEMKO
-
Publication number: 20240331799Abstract: The present disclosure provides methods for determining the ploidy status of a chromosome in a gestating fetus from genotypic data measured from a mixed sample of DNA comprising DNA from both the mother of the fetus and from the fetus, and optionally from genotypic data from the mother and father. The ploidy state is determined by using a joint distribution model to create a plurality of expected allele distributions for different possible fetal ploidy states given the parental genotypic data, and comparing the expected allelic distributions to the pattern of measured allelic distributions measured in the mixed sample, and choosing the ploidy state whose expected allelic distribution pattern most closely matches the observed allelic distribution pattern. The mixed sample of DNA may be preferentially enriched at a plurality of polymorphic loci in a way that minimizes the allelic bias, for example using massively multiplexed targeted PCR.Type: ApplicationFiled: February 23, 2024Publication date: October 3, 2024Applicant: Natera, Inc.Inventors: MATTHEW RABINOWITZ, George GEMELOS, Milena BANJEVIC, Allison RYAN, Zachary DEMKO, Matthew Hill, Bernhard ZIMMERMANN, Johan BANER
-
Publication number: 20240318252Abstract: The invention provides methods for simultaneously amplifying multiple nucleic acid regions of interest in one reaction volume as well as methods for selecting a library of primers for use in such amplification methods. The invention also provides library of primers with desirable characteristics, such as minimal formation of amplified primer dimers or other non-target amplicons.Type: ApplicationFiled: June 4, 2024Publication date: September 26, 2024Applicant: Natera, Inc.Inventors: Matthew RABINOWITZ, Matthew Micah HILL, Bernhard A. ZIMMERMANN, Johan BANER, George GEMELOS, Milena BANJEVIC, Allison RYAN, Styrmir SIGURJONSSON, Zachary DEMKO
-
Publication number: 20240318263Abstract: The invention provides methods, systems, and computer readable medium for detecting ploidy of chromosome segments or entire chromosomes, for detecting single nucleotide variants and for detecting both ploidy of chromosome segments and single nucleotide variants. In some aspects, the invention provides methods, systems, and computer readable medium for detecting cancer or a chromosomal abnormality in a gestating fetus.Type: ApplicationFiled: June 4, 2024Publication date: September 26, 2024Applicant: Natera, Inc.Inventors: Joshua BABIARZ, Tudor Pompiliu Consantin, Lane A. Eubank, George Gemelos, Matthew Micah Hill, Huseyin Eser Kirkizlar, Matthew Rabinowitz, Onur Sakarya, Styrmir Sigurjonsson, Bernhard Zimmermann
-
Publication number: 20240309456Abstract: The invention provides methods for simultaneously amplifying multiple nucleic acid regions of interest in one reaction volume as well as methods for selecting a library of primers for use in such amplification methods. The invention also provides library of primers with desirable characteristics, such as minimal formation of amplified primer dimers or other non-target amplicons.Type: ApplicationFiled: May 30, 2024Publication date: September 19, 2024Applicant: Natera, Inc.Inventors: MATTHEW RABINOWITZ, Matthew Micah HILL, Bernhard A. ZIMMERMANN, Johan BANER, George GEMELOS, Milena BANJEVIC, Allison RYAN, Styrmir SIGURJONSSON, Zachary DEMKO
-
Publication number: 20240309464Abstract: The invention provides methods, systems, and computer readable medium for detecting ploidy of chromosome segments or entire chromosomes, for detecting single nucleotide variants and for detecting both ploidy of chromosome segments and single nucleotide variants. In some aspects, the invention provides methods, systems, and computer readable medium for detecting cancer or a chromosomal abnormality in a gestating fetus.Type: ApplicationFiled: May 30, 2024Publication date: September 19, 2024Applicant: Natera, Inc.Inventors: Joshua BABIARZ, Tudor Pompiliu CONSTATIN, Lane A. EUBANK, George GEMELOS, Matthew Micah HILL, Huseyin Eser KIRKIZLAR, Matthew RABIBOWITZ, Onur SAKARYA, Styrmir SIGURJONSSON, Bernhard ZIMMERMANN
-
Publication number: 20240301482Abstract: The invention provides improved methods, compositions, and kits for detecting ploidy of chromosome regions, e.g. for detecting cancer or a chromosomal abnormality in a gestating fetus. The methods can utilize a set of more than 200 SNPs that are found within haploblocks and can include analyzing a series of target chromosomal regions related to cancer or a chromosomal abnormality in a gestating fetus. Finally the method may use knowledge about chromosome crossover locations or a best fit algorithm for the analysis. The compositions may comprise more than 200 primers located within haplotype blocks known to show CNV.Type: ApplicationFiled: February 14, 2024Publication date: September 12, 2024Applicant: Natera, Inc.Inventors: Huseyin Eser KIRKIZLAR, Raheleh SALARI, Stymir SIGURJONSSON, Bernhard ZIMMERMANN, Allison RYAN, Naresh VANKAYALAPATI
-
Publication number: 20240271214Abstract: The invention provides methods for simultaneously amplifying multiple nucleic acid regions of interest in one reaction volume as well as methods for selecting a library of primers for use in such amplification methods. The invention also provides library of primers with desirable characteristics, such as minimal formation of amplified primer dimers or other non-target amplicons.Type: ApplicationFiled: March 28, 2024Publication date: August 15, 2024Applicant: Natera, Inc.Inventors: MATTHEW RABINOWITZ, Matthew Micah HILL, Bernhard ZIMMERMANN, Johan BANER, George GEMELOS, Milena BANJEVIC, Allison RYAN, Styrmir SIGURJONSSON, Zachary DEMKO
-
Patent number: 12024738Abstract: The invention provides methods for detecting single nucleotide variants in breast cancer, bladder cancer, or colorectal cancer. Additional methods and compositions, such as reaction mixtures and solid supports comprising clonal populations of nucleic acids, are provided.Type: GrantFiled: April 12, 2019Date of Patent: July 2, 2024Assignee: Natera, Inc.Inventors: Bernhard Zimmermann, Raheleh Salari, Ryan Swenerton, Hsin-Ta Wu, Himanshu Sethi
-
Patent number: 12020778Abstract: The present disclosure provides methods for determining the ploidy status of a chromosome in a gestating fetus from genotypic data measured from a mixed sample of DNA comprising DNA from both the mother of the fetus and from the fetus, and optionally from genotypic data from the mother and father. The ploidy state is determined by using a joint distribution model to create a plurality of expected allele distributions for different possible fetal ploidy states given the parental genotypic data, and comparing the expected allelic distributions to the pattern of measured allelic distributions measured in the mixed sample, and choosing the ploidy state whose expected allelic distribution pattern most closely matches the observed allelic distribution pattern. The mixed sample of DNA may be preferentially enriched at a plurality of polymorphic loci in a way that minimizes the allelic bias, for example using massively multiplexed targeted PCR.Type: GrantFiled: March 22, 2019Date of Patent: June 25, 2024Assignee: Natera, Inc.Inventors: Matthew Rabinowitz, George Gemelos, Milena Banjevic, Allison Ryan, Zachary Demko, Matthew Hill, Bernhard Zimmermann, Johan Baner
-
Publication number: 20240182970Abstract: Blood plasma of pregnant women contains fetal and (generally >90%) maternal circulatory extracellular DNA. Most of said fetal DNA contains ?500 base pairs, said maternal DNA having a greater size. Separation of circulatory extracellular DNA of ?500 base pairs results in separation of fetal from maternal DNA. A fraction of a blood plasma or serum sample of a pregnant woman containing, due to size separation (e.g. by chromatography, density gradient centrifugation or nanotechnological methods), extracellular DNA substantially comprising ?500 base pairs is useful for non-invasive detection of fetal genetic traits (including the fetal RhD gene in pregnancies at risk for HDN; fetal Y chromosome-specific sequences in pregnancies at risk for X chromosome-linked disorders; chromosomal aberrations; hereditary Mendelian genetic disorders and corresponding genetic markers; and traits decisive for paternity determination) by e.g. PCR, ligand chain reaction or probe hybridization techniques, or nucleic acid arrays.Type: ApplicationFiled: December 13, 2023Publication date: June 6, 2024Inventors: Sinuhe HAHN, Wolfgang HOLZGREVE, Bernhard ZIMMERMANN, Ying LI
-
Publication number: 20240158855Abstract: The invention provides methods for simultaneously amplifying multiple nucleic acid regions of interest in one reaction volume as well as methods for selecting a library of primers for use in such amplification methods. The invention also provides library of primers with desirable characteristics, such as minimal formation of amplified primer dimers or other non-target amplicons.Type: ApplicationFiled: February 20, 2023Publication date: May 16, 2024Applicant: Natera, Inc.Inventors: Joshua BABIARZ, Tudor Pompiliu CONSTANTIN, Lane A. EUBANK, George GEMELOS, Matthew Micah HILL, Huseyin Eser KIRKIZLAR, Matthew RABINOWITZ, Onur SAKARYA, Styrmir SIGURJONSSON, Bernhard ZIMMERMANN
-
Patent number: 11946101Abstract: The invention provides improved methods, compositions, and kits for detecting ploidy of chromosome regions, e.g. for detecting cancer or a chromosomal abnormality in a gestating fetus. The methods can utilize a set of more than 200 SNPs that are found within haploblocks and can include analyzing a series of target chromosomal regions related to cancer or a chromosomal abnormality in a gestating fetus. Finally the method may use knowledge about chromosome crossover locations or a best fit algorithm for the analysis. The compositions may comprise more than 200 primers located within haplotype blocks known to show CNV.Type: GrantFiled: June 21, 2022Date of Patent: April 2, 2024Assignee: Natera, Inc.Inventors: Huseyin Eser Kirkizlar, Raheleh Salari, Styrmir Sigurjonsson, Bernhard Zimmermann, Allison Ryan, Naresh Vankayalapati
-
Patent number: 11939634Abstract: The invention provides methods for simultaneously amplifying multiple nucleic acid regions of interest in one reaction volume as well as methods for selecting a library of primers for use in such amplification methods. The invention also provides library of primers with desirable characteristics, such as minimal formation of amplified primer dimers or other non-target amplicons.Type: GrantFiled: September 11, 2020Date of Patent: March 26, 2024Assignee: Natera, Inc.Inventors: Joshua Babiarz, Tudor Pompiliu Constantin, Lane A. Eubank, George Gemelos, Matthew Micah Hill, Huseyin Eser Kirkizlar, Matthew Rabinowitz, Onur Sakarya, Styrmir Sigurjonsson, Bernhard Zimmermann
-
Publication number: 20240068031Abstract: The invention provides methods for simultaneously amplifying multiple nucleic acid regions of interest in one reaction volume as well as methods for selecting a library of primers for use in such amplification methods. The invention also provides library of primers with desirable characteristics, such as minimal formation of amplified primer dimers or other non-target amplicons.Type: ApplicationFiled: September 7, 2023Publication date: February 29, 2024Applicant: Natera, Inc.Inventors: Matthew RABINOWITZ, Matthew HILL, Bernhard ZIMMERMANN, George GEMELOS, Johan BANER, Milena BANJEVIC, Allison RYAN, Styrmir SIGURJONSSON, Zachary DEMKO
-
Publication number: 20240062846Abstract: The present disclosure provides methods for determining the ploidy status of a chromosome in a gestating fetus from genotypic data measured from a mixed sample of DNA comprising DNA from both the mother of the fetus and from the fetus, and optionally from genotypic data from the mother and father. The ploidy state is determined by using a joint distribution model to create a plurality of expected allele distributions for different possible fetal ploidy states given the parental genotypic data, and comparing the expected allelic distributions to the pattern of measured allelic distributions measured in the mixed sample, and choosing the ploidy state whose expected allelic distribution pattern most closely matches the observed allelic distribution pattern. The mixed sample of DNA may be preferentially enriched at a plurality of polymorphic loci in a way that minimizes the allelic bias, for example using massively multiplexed targeted PCR.Type: ApplicationFiled: September 21, 2023Publication date: February 22, 2024Applicant: Natera, Inc.Inventors: Matthew RABINOWITZ, George GEMELOS, Milena BANJEVIC, Allison RYAN, Zachary DEMKO, Matthew HILL, Bernhard ZIMMERMANN, Johan BANER
-
Publication number: 20240038328Abstract: The present disclosure provides methods for determining the ploidy status of a chromosome in a gestating fetus from genotypic data measured from a mixed sample of DNA comprising DNA from both the mother of the fetus and from the fetus, and optionally from genotypic data from the mother and father. The ploidy state is determined by using a joint distribution model to create a plurality of expected allele distributions for different possible fetal ploidy states given the parental genotypic data, and comparing the expected allelic distributions to the pattern of measured allelic distributions measured in the mixed sample, and choosing the ploidy state whose expected allelic distribution pattern most closely matches the observed allelic distribution pattern. The mixed sample of DNA may be preferentially enriched at a plurality of polymorphic loci in a way that minimizes the allelic bias, for example using massively multiplexed targeted PCR.Type: ApplicationFiled: September 21, 2023Publication date: February 1, 2024Applicant: Natera, Inc.Inventors: Matthew RABINOWITZ, George GEMELOS, Milena BANJEVIC, Allison RYAN, Zachary DEMKO, Matthew HILL, Bernhard ZIMMERMANN, Johan BANER
-
Publication number: 20230420071Abstract: The present disclosure provides methods for determining the ploidy status of a chromosome in a gestating fetus from genotypic data measured from a mixed sample of DNA comprising DNA from both the mother of the fetus and from the fetus, and optionally from genotypic data from the mother and father. The ploidy state is determined by using a joint distribution model to create a plurality of expected allele distributions for different possible fetal ploidy states given the parental genotypic data, and comparing the expected allelic distributions to the pattern of measured allelic distributions measured in the mixed sample, and choosing the ploidy state whose expected allelic distribution pattern most closely matches the observed allelic distribution pattern. The mixed sample of DNA may be preferentially enriched at a plurality of polymorphic loci in a way that minimizes the allelic bias, for example using massively multiplexed targeted PCR.Type: ApplicationFiled: September 7, 2023Publication date: December 28, 2023Applicant: Natera, Inc.Inventors: Matthew RABINOWITZ, George GEMELOS, Milena BANJEVIC, Allison RYAN, Zachary DEMKO, Matthew HILL, Bernhard ZIMMERMANN, Johan BANER
-
Publication number: 20230383348Abstract: The invention provides methods for simultaneously amplifying multiple nucleic acid regions of interest in one reaction volume as well as methods for selecting a library of primers for use in such amplification methods. The invention also provides library of primers with desirable characteristics, such as minimal formation of amplified primer dimers or other non-target amplicons.Type: ApplicationFiled: March 24, 2023Publication date: November 30, 2023Applicant: Natera, Inc.Inventors: Matthew RABINOWITZ, Matthew HILL, Bernhard ZIMMERMANN, George GEMELOS, Johan BANER, Milena BANJEVIC, Allison RYAN, Styrmir SIGURJONSSON, Zachary DEMKO