Patents by Inventor Bert Du Bois

Bert Du Bois has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230127645
    Abstract: An intermediate structure for a microfluidic device and a method for manufacturing a microfluidic device are provided. The method includes: a) providing a first substrate having a first layer thereon, and a second layer on the first layer; b) forming a first nanopore in the second layer, in such a way that a part of the first layer coincides with a bottom of the first nanopore; c) exposing said part of the first layer to a liquid etchant, thereby forming a cavity under the first nanopore, the cavity having a larger width than a width of the bottom of the first nanopore; d) filling the first nanopore and the cavity with a filling material, thereby forming a first plug; e) forming a bottom fluidic access for the nanopore by removing part of the first substrate and part of the first layer so as to expose the plug; and f) removing the plug, thereby fluidly connecting the bottom fluidic access to the nanopore.
    Type: Application
    Filed: October 10, 2022
    Publication date: April 27, 2023
    Inventors: Simone Severi, Bert Du Bois, Ashesh Ray Chaudhuri
  • Publication number: 20220334079
    Abstract: A method for forming a nanopore transistor and a nanopore transistor is provided. The method includes: (a) forming an aperture in a filler material by: (i) providing a fin comprising a semiconductor layer and a top layer; (ii) pattering the top layer to form a pillar; (iii) embedding the pillar in a filler material; (iv) removing the pillar, leaving an aperture; (v) lining the aperture with a spacer material; (b) forming a nanopore by etching through the aperture; (b) lining the nanopore with a dielectric, (c) forming a source and a drain by either: between steps a.ii and a.iii, doping the bottom semiconductor layer by using the pillar as a mask, or after step c, filling the aperture with a sealing material, thereby forming a post; removing the filler material; doping the bottom semiconductor layer by using the post as a mask; and removing the sealing material.
    Type: Application
    Filed: March 11, 2022
    Publication date: October 20, 2022
    Inventors: David Barge, Bert Du Bois, Simone Severi, Ashesh Ray Chaudhuri
  • Patent number: 10626457
    Abstract: Arrays of integrated optical devices and their methods for production are provided. The devices include an integrated bandpass filter layer that comprises at least two multi-cavity filter elements with different central bandpass wavelengths. The device arrays are useful in the analysis of highly multiplexed optical reactions in large numbers at high densities, including biochemical reactions, such as nucleic acid sequencing reactions. The devices provide for the efficient and reliable coupling of optical excitation energy from an optical source to the optical reactions. Optical signals emitted from the reactions can thus be measured with high sensitivity and discrimination. The device arrays are well suited for miniaturization and high throughput.
    Type: Grant
    Filed: October 28, 2016
    Date of Patent: April 21, 2020
    Assignee: Pacific Biosciences of California, Inc.
    Inventors: Ravi Saxena, Annette Grot, Nicolaas Tack, Pilar Gonzalez, Bert Du Bois, Simone Severi
  • Patent number: 10267733
    Abstract: The present disclosure relates to semiconductor devices for detecting fluorescent particles. At least one embodiment relates to an integrated semiconductor device for detecting fluorescent tags. The device includes a first layer, a second layer, a third layer, a fourth layer, and a fifth layer. The first layer includes a detector element. The second layer includes a rejection filter. The third layer is fabricated from dielectric material. The fourth layer is an optical waveguide configured and positioned such that a top surface of the fourth layer is illuminated with an evanescent tail of excitation light guided by the optical waveguide when the fluorescent tags are present. The fifth layer includes a microfluidic channel. The optical waveguide is configured and positioned such that the microfluidic channel is illuminated with the evanescent tail. The detector element is positioned such that light from activated fluorescent tags can be received.
    Type: Grant
    Filed: May 22, 2015
    Date of Patent: April 23, 2019
    Assignee: IMEC VZW
    Inventors: Pol Van Dorpe, Liesbet Lagae, Peter Peumans, Andim Stassen, Philippe Helin, Bert Du Bois, Simone Severi
  • Publication number: 20170145498
    Abstract: Arrays of integrated optical devices and their methods for production are provided. The devices include an integrated bandpass filter layer that comprises at least two multi-cavity filter elements with different central bandpass wavelengths. The device arrays are useful in the analysis of highly multiplexed optical reactions in large numbers at high densities, including biochemical reactions, such as nucleic acid sequencing reactions. The devices provide for the efficient and reliable coupling of optical excitation energy from an optical source to the optical reactions. Optical signals emitted from the reactions can thus be measured with high sensitivity and discrimination. The device arrays are well suited for miniaturization and high throughput.
    Type: Application
    Filed: October 28, 2016
    Publication date: May 25, 2017
    Inventors: Ravi SAXENA, Annette GROT, Nicolaas TACK, Pilar GONZALEZ, Bert DU BOIS, Simone SEVERI
  • Publication number: 20170082544
    Abstract: The present disclosure relates to semiconductor devices for detecting fluorescent particles. At least one embodiment relates to an integrated semiconductor device for detecting fluorescent tags. The device includes a first layer, a second layer, a third layer, a fourth layer, and a fifth layer. The first layer includes a detector element. The second layer includes a rejection filter. The third layer is fabricated from dielectric material. The fourth layer is an optical waveguide configured and positioned such that a top surface of the fourth layer is illuminated with an evanescent tail of excitation light guided by the optical waveguide when the fluorescent tags are present. The fifth layer includes a microfluidic channel. The optical waveguide is configured and positioned such that the microfluidic channel is illuminated with the evanescent tail. The detector element is positioned such that light from activated fluorescent tags can be received.
    Type: Application
    Filed: May 22, 2015
    Publication date: March 23, 2017
    Applicant: IMEC VZW
    Inventors: Pol Van Dorpe, Liesbet Lagae, Peter Peumans, Andim Stassen, Philippe Helin, Bert Du Bois, Simone Severi