Patents by Inventor Berthold Keppeler

Berthold Keppeler has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10113460
    Abstract: A method for adjusting the temperature of an exhaust gas aftertreatment device is disclosed. A first characteristic temperature value for an oxidative carbon monoxide conversion and a second characteristic temperature value for an oxidative hydrocarbon conversion are assigned to an oxidation catalytic converter, and a third characteristic temperature value for a reductive NOx conversion is assigned to an SCR catalytic converter. Different respective values for injection parameters of injection processes for fuel injections into combustion chambers of the internal combustion engine and/or the heating output of an electric heating element are set upon reaching the first and the second characteristic temperature values for the temperature of the oxidation catalytic converter and upon reaching the third characteristic temperature value for the temperature of the SCR catalytic converter.
    Type: Grant
    Filed: January 13, 2015
    Date of Patent: October 30, 2018
    Assignee: Daimler AG
    Inventors: Ortwin Balthes, Berthold Keppeler, Siegfried Mueller, Thorsten Woog
  • Patent number: 10094265
    Abstract: A method and device for monitoring the formation of nitrogen dioxide at an oxidation catalytic converter is disclosed. The conversion of the nitrogen oxides, corresponding to a first exhaust gas volume flowrate through the oxidation catalytic converter, is detected. The exhaust gas volume flowrate is then changed and the conversion of the nitrogen oxides which changes with the change in the exhaust gas volume flowrate is also detected. By reference to the respective conversion of the nitrogen oxides at the different exhaust gas flowrates through the oxidation catalytic converter, it is concluded, on the basis of a predetermined relationship between the conversion of the nitrogen oxides and a proportion of nitrogen dioxide in the nitrogen oxides in the exhaust gas, that nitrogen dioxide is being formed at the oxidation catalytic converter.
    Type: Grant
    Filed: October 1, 2013
    Date of Patent: October 9, 2018
    Assignee: Daimler AG
    Inventor: Berthold Keppeler
  • Publication number: 20170335730
    Abstract: A method for determining a soot load on a particle filter provided with a selective catalytic coating is disclosed. The method includes determining a nitric oxide conversion on the particle filter and determining a soot load on the particle filter from the determined nitric oxide conversion.
    Type: Application
    Filed: October 28, 2015
    Publication date: November 23, 2017
    Applicant: Daimler AG
    Inventors: Berthold KEPPELER, Thorsten WOOG
  • Patent number: 9657620
    Abstract: A system for exhaust gas routing and aftertreatment in a motor vehicle includes a first exhaust gas duct element, which has an inlet opening and an outlet opening, and a second exhaust gas duct element, which has a transfer pipe having a longitudinal axis and having a sleeve surface and a first closed end. An intake opening is provided in the sleeve surface adjacent to the closed end. The transfer pipe projects into the outlet opening and is accommodated in the first exhaust gas duct element by its closed end and the intake opening, so that exhaust gas flowing in through the inlet opening in a first direction can flow through the intake opening and into the transfer pipe and flow—viewed in the direction of the longitudinal axis of the transfer pipe—in the transfer pipe through the outlet opening out of the first exhaust gas duct element.
    Type: Grant
    Filed: September 28, 2013
    Date of Patent: May 23, 2017
    Assignee: Daimler AG
    Inventors: Tillmann Braun, Berthold Keppeler, Bernhard Kobiela, Alexander Mackensen, Antonio Pepe, Timo Schmidt, Michael Schroepel
  • Patent number: 9482126
    Abstract: A method for operating an exhaust gas system of a motor vehicle involves performing regeneration of the particle filter as a function of at least one aging value characterizing an aging condition of the oxidation catalytic converter.
    Type: Grant
    Filed: February 28, 2013
    Date of Patent: November 1, 2016
    Assignee: Daimler AG
    Inventors: Ortwin Balthes, Berthold Keppeler, Thorsten Woog
  • Patent number: 9458799
    Abstract: A method for operating a motor vehicle internal combustion engine that has an exhaust tract with an exhaust gas purification unit acting catalytically and/or by filtration with which combustion air supplemented by exhaust gas diverging from the exhaust tract is fed to the combustion chambers of the internal combustion engine by exhaust gas branching off from the exhaust tract at a total exhaust gas recirculation rate. The total exhaust gas recirculation rate has a low-pressure proportion diverging downstream from the exhaust gas purification unit and a high-pressure proportion diverging upstream from an exhaust gas turbocharger turbine arranged in the exhaust tract. An essentially decreasing low pressure proportion is set with at least approximately the same operating points of the internal combustion engine with an increasing operating period of the exhaust gas purification unit.
    Type: Grant
    Filed: October 18, 2011
    Date of Patent: October 4, 2016
    Assignee: Daimler AG
    Inventors: Ortwin Balthes, Berthold Keppeler, Siegfried Mueller
  • Patent number: 9429053
    Abstract: A method for operating an internal combustion engine having an exhaust emission control unit with at least one exhaust emission control component which acts catalytically and/or by filtration involves operating the internal combustion engine, during a cold start or warm-up of the internal combustion engine, using a cold start engine operating process with predefined values for predefined internal combustion engine operating variables. The cold start and/or the warm-up of the internal combustion engine is controlled or regulated as a function of soot loading of a particle filter of the exhaust emission control unit.
    Type: Grant
    Filed: September 20, 2012
    Date of Patent: August 30, 2016
    Assignee: Daimler AG
    Inventor: Berthold Keppeler
  • Patent number: 9157356
    Abstract: A method for operating a motor vehicle diesel engine having an exhaust emission control system is provided. The emission control system includes an oxidation catalytic converter, a particle filter, and an SCR catalytic converter, in which the exhaust gas that is discharged from the diesel engine is passed through the oxidation catalytic converter before passing through the particle filter and the SCR catalytic converter. A regeneration of the particle filter with thermal soot burn-off is occasionally carried out, during which the diesel engine is operated at an air-fuel ratio having a lambda value (?) of at least approximately 1.0, and air is added to the exhaust gas after it exits the oxidation catalytic converter and before it enters the particle filter air, so that soot deposited on the particle filter is burnt-off.
    Type: Grant
    Filed: December 9, 2011
    Date of Patent: October 13, 2015
    Assignee: Daimler AG
    Inventors: Ortwin Balthes, Thomas Beckmann, Berthold Keppeler, Siegfried Mueller
  • Publication number: 20150275737
    Abstract: A method and device for monitoring the formation of nitrogen dioxide at an oxidation catalytic converter is disclosed. The conversion of the nitrogen oxides, corresponding to a first exhaust gas volume flowrate through the oxidation catalytic converter, is detected. The exhaust gas volume flowrate is then changed and the conversion of the nitrogen oxides which changes with the change in the exhaust gas volume flowrate is also detected. By reference to the respective conversion of the nitrogen oxides at the different exhaust gas flowrates through the oxidation catalytic converter, it is concluded, on the basis of a predetermined relationship between the conversion of the nitrogen oxides and a proportion of nitrogen dioxide in the nitrogen oxides in the exhaust gas, that nitrogen dioxide is being formed at the oxidation catalytic converter.
    Type: Application
    Filed: October 1, 2013
    Publication date: October 1, 2015
    Applicant: Daimler AG
    Inventor: Berthold Keppeler
  • Publication number: 20150275728
    Abstract: A system for exhaust gas routing and aftertreatment in a motor vehicle includes a first exhaust gas duct element, which has an inlet opening and an outlet opening, and a second exhaust gas duct element, which has a transfer pipe having a longitudinal axis and having a sleeve surface and a first closed end. An intake opening is provided in the sleeve surface adjacent to the closed end. The transfer pipe projects into the outlet opening and is accommodated in the first exhaust gas duct element by its closed end and the intake opening, so that exhaust gas flowing in through the inlet opening in a first direction can flow through the intake opening and into the transfer pipe and flow—viewed in the direction of the longitudinal axis of the transfer pipe—in the transfer pipe through the outlet opening out of the first exhaust gas duct element.
    Type: Application
    Filed: September 28, 2013
    Publication date: October 1, 2015
    Inventors: Tillmann Braun, Berthold Keppeler, Bernhard Kobiela, Alexander Mackensen, Antonio Pepe, Timo Schmidt, Michael Schroepel
  • Publication number: 20150176450
    Abstract: A method for operating an exhaust gas system of a motor vehicle involves performing regeneration of the particle filter as a function of at least one aging value characterizing an aging condition of the oxidation catalytic converter.
    Type: Application
    Filed: February 28, 2013
    Publication date: June 25, 2015
    Inventors: Ortwin Balthes, Berthold Keppeler, Thorsten Woog
  • Publication number: 20140318105
    Abstract: A method for operating an internal combustion engine having an exhaust emission control unit with at least one exhaust emission control component which acts catalytically and/or by filtration involves operating the internal combustion engine, during a cold start or warm-up of the internal combustion engine, using a cold start engine operating process with predefined values for predefined internal combustion engine operating variables. The cold start and/or the warm-up of the internal combustion engine is controlled or regulated as a function of soot loading of a particle filter of the exhaust emission control unit.
    Type: Application
    Filed: September 20, 2012
    Publication date: October 30, 2014
    Applicant: Daimler AG
    Inventor: Berthold Keppeler
  • Patent number: 8833059
    Abstract: A motor vehicle combustion engine includes an air supply section and an exhaust gas recirculation section that includes a particle filter and an SCR exhaust gas purification component. A first exhaust gas turbocharger includes a turbine arranged upstream of the particle filter in the exhaust gas section. A first exhaust gas recirculation line, which diverges from the exhaust gas section upstream of the turbine of the first exhaust gas turbocharger, and a second exhaust gas recirculation line, which diverges from the exhaust gas section downstream of the particle filter are provided to recirculate the exhaust gas from the exhaust gas section into the air supply system. An SCR catalyst is arranged in the second exhaust gas recirculation line.
    Type: Grant
    Filed: October 18, 2011
    Date of Patent: September 16, 2014
    Assignee: Daimler AG
    Inventor: Berthold Keppeler
  • Patent number: 8806851
    Abstract: In a method for reducing the emission of nitrogen dioxide in a motor vehicle having an exhaust gas purification system having an SCR catalytic converter with adsorption centers for nitrogen oxides, an exhaust gas enriched with ammonia is supplied to the SCR catalytic converter above an operating temperature. Below the operating temperature, the exhaust gas supplied to the SCR catalytic converter is enriched with a material such that an adsorption of nitrogen oxides is inhibited at corresponding adsorption centers of the SCR catalytic converter. In order to reduce the overall NOx emissions below a first, predeterminable amount, an exhaust gas enriched with ammonia is supplied to the SCR catalytic converter and the NO2 portion of the total NOx emissions is reduced below a second, predeterminable amount in that NO2 is converted with hydrocarbons stored in the SCR catalytic converter.
    Type: Grant
    Filed: September 9, 2008
    Date of Patent: August 19, 2014
    Assignee: Daimler AG
    Inventors: Cyrill Kammer, Berthold Keppeler, Jochen Lahr, Markus Paule, Anke Traebert, Nicole Werquet, Axel Zuschlag
  • Patent number: 8763366
    Abstract: In a method for operating an air-compressing fuel-injection internal combustion engine having an exhaust gas post-treatment system with a particle filter and a nitrogen oxide reduction catalytic converter, a plurality of internal combustion engine operating settings are provided, each having respective predefined values for predefined internal combustion engine operating parameters. A heating operating setting is set when the internal combustion engine is warming up, while a basic operating setting is set in the warmed-up state. When the temperature in the exhaust gas system exceeds a predefinable first value, the heating operating setting is changed over to the basic operating setting. In the warmed-up state, at least one further (third) operating setting, with an exhaust gas recirculation rate that is reduced compared to the basic operating setting, is provided in addition to the basic operating setting.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: July 1, 2014
    Assignee: Daimler AG
    Inventors: Bernd Christner, Alexander Kaiser, Berthold Keppeler, Holger Kissling, Markus Paule
  • Publication number: 20140109554
    Abstract: A method for operating a motor vehicle diesel engine having an exhaust emission control system is provided. The emission control system includes an oxidation catalytic converter, a particle filter, and an SCR catalytic converter, in which the exhaust gas that is discharged from the diesel engine is passed through the oxidation catalytic converter before passing through the particle filter and the SCR catalytic converter. A regeneration of the particle filter with thermal soot burn-off is occasionally carried out, during which the diesel engine is operated at an air-fuel ratio having a lambda value (?) of at least approximately 1.0, and air is added to the exhaust gas after it exits the oxidation catalytic converter and before it enters the particle filter air, so that soot deposited on the particle filter is burnt-off.
    Type: Application
    Filed: December 9, 2011
    Publication date: April 24, 2014
    Applicant: Daimler AG
    Inventors: Ortwin Balthes, Thomas Beckmann, Berthold Keppeler, Siegfried Mueller
  • Publication number: 20140041367
    Abstract: An operating method is provided for a motor vehicle diesel engine having an exhaust emission control system that includes a three-way catalytic converter and an SCR catalytic converter situated one behind the other in the flow direction of the exhaust gas. The diesel engine is operated, at least intermittently, with an air-fuel ratio of approximately ?=1.0 in a first operating range in which the SCR catalytic converter falls below a predefinable minimum temperature and with excess air that is typical for normal diesel engine operation in a second operating range in which the SCR catalytic converter exceeds the predefinable minimum temperature. An output signal of an exhaust gas sensor situated downstream from the three-way catalytic converter and which is correlated with a NOx concentration of the exhaust gas is used to set the air-fuel ratio in the first operating range.
    Type: Application
    Filed: December 7, 2011
    Publication date: February 13, 2014
    Applicant: DAIMLER AG
    Inventors: Ortwin Balthes, Berthold Keppeler, Siegfried Mueller
  • Publication number: 20130269327
    Abstract: A motor vehicle combustion engine includes an air supply section and an exhaust gas recirculation section that includes a particle filter and an SCR exhaust gas purification component. A first exhaust gas turbocharger includes a turbine arranged upstream of the particle filter in the exhaust gas section. A first exhaust gas recirculation line, which diverges from the exhaust gas section upstream of the turbine of the first exhaust gas turbocharger, and a second exhaust gas recirculation line, which diverges from the exhaust gas section downstream of the particle filter are provided to recirculate the exhaust gas from the exhaust gas section into the air supply system. An SCR catalyst is arranged in the second exhaust gas recirculation line.
    Type: Application
    Filed: October 18, 2011
    Publication date: October 17, 2013
    Applicant: Daimler AG
    Inventor: Berthold Keppeler
  • Patent number: 8429897
    Abstract: In a method for operating an air-compressing fuel-injection internal combustion engine having an exhaust gas post-treatment system with a particle filter and a nitrogen oxide reduction catalytic converter, a plurality of internal combustion engine operating settings are provided, each having respective predefined values for predefined internal combustion engine operating parameters. A heating operating setting is set when the internal combustion engine is warming up, while a basic operating setting is set in the warmed-up state. When the temperature in the exhaust gas system exceeds a predefinable first value, the heating operating setting is changed over to the basic operating setting. In the warmed-up state, at least one further (third) operating setting, with an exhaust gas recirculation rate that is reduced compared to the basic operating setting, is provided in addition to the basic operating setting.
    Type: Grant
    Filed: November 30, 2011
    Date of Patent: April 30, 2013
    Assignee: Daimler AG
    Inventors: Bernd Christner, Alexander Kaiser, Berthold Keppeler, Holger Kissling, Markus Paule
  • Patent number: 8181445
    Abstract: The exhaust gas aftertreatment device according to the invention having a reforming unit for generating hydrogen by steam reforming, partial oxidation of hydrocarbons and/or mixed forms thereof is distinguished by the fact that the reforming unit is arranged directly in the main exhaust gas stream from an internal combustion engine. The steam and residual oxygen which are required for the reforming preferably originate from the exhaust gas. The step of providing the required reducing agents consists in briefly switching the internal combustion engine, which is predominantly operated in lean-burn mode and the exhaust gas from which is undergoing the aftertreatment, to rich-burn mode, allowing reforming by means of the reforming reactor according to the invention using the hydrocarbons that are present in the exhaust gas.
    Type: Grant
    Filed: February 25, 2004
    Date of Patent: May 22, 2012
    Assignee: Daimler AG
    Inventors: Frank Duvinage, Berthold Keppeler, Bernd Krutzsch, Markus Paule, Michel Weibel