Patents by Inventor Berthold Schmidt

Berthold Schmidt has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240128719
    Abstract: A method for producing a semiconductor component for emitting light includes providing a base body, the base body comprising an active layer for generating the light and a tunnel contact, and forming a stop structure by implantation in a region of the tunnel contact. The stop structure delimits the tunnel contact and serves to constrict a current introduced into the active layer. Defects due to crystal imperfections are generated by the implantation so that the implanted region is transparent for the light having an emitted wavelength.
    Type: Application
    Filed: December 27, 2023
    Publication date: April 18, 2024
    Inventors: Roman Koerner, Alexander Weigl, Holger Joachim Moench, Berthold Schmidt
  • Publication number: 20230091972
    Abstract: A semiconductor disk chip includes a cap layer having at least one structured region for mode selection, a periodic gain structure, a Distributed Bragg reflector, and a substrate. The structured region is structured in such a way that a lateral fundamental mode of the laser radiation experiences lower losses than radiation of higher laser modes and includes at least one trench extending into the cap layer to a depth not greater than a thickness of the cap layer, and wherein the depth decreases from an outer region of an emission surface of the semiconductor chip in a direction of an inner of the emission surface of the semiconductor chip.
    Type: Application
    Filed: November 18, 2022
    Publication date: March 23, 2023
    Inventors: Cunzhu Tong, Guanyu Hou, Lijie Wang, Sicong Tian, Lijun Wang, Andreas Popp, Berthold Schmidt
  • Patent number: 11557874
    Abstract: Methods, devices, and systems for double-sided cooling of laser diodes are provided. In one aspect, a laser diode assembly includes a first heat sink, a plurality of submounts spaced apart from one another on the first heat sink, a plurality of laser diodes, and a second heat sink on top sides of the plurality of laser diodes. Each laser diode includes a corresponding active layer between a first-type doped semiconductor layer and a second-type doped semiconductor layer. A bottom side of each laser diode is positioned on a different corresponding submount of the plurality of submounts. The plurality of laser diode are electrically connected in series.
    Type: Grant
    Filed: May 18, 2021
    Date of Patent: January 17, 2023
    Assignee: Trumpf Photonics, Inc.
    Inventors: Prasanta Modak, Stefan Heinemann, Berthold Schmidt
  • Publication number: 20220376467
    Abstract: Methods, devices, and systems for double-sided cooling of laser diodes are provided. In one aspect, a laser diode assembly includes a first heat sink, a plurality of submounts spaced apart from one another on the first heat sink, a plurality of laser diodes, and a second heat sink on top sides of the plurality of laser diodes. Each laser diode includes a corresponding active layer between a first-type doped semiconductor layer and a second-type doped semiconductor layer. A bottom side of each laser diode is positioned on a different corresponding submount of the plurality of submounts. The plurality of laser diode are electrically connected in series.
    Type: Application
    Filed: May 18, 2021
    Publication date: November 24, 2022
    Inventors: Prasanta Modak, Stefan Heinemann, Berthold Schmidt
  • Patent number: 11370063
    Abstract: A method for encoding a plate-like workpiece comprising: defining an encoding area; applying a magnetic layer to the surface of the workpiece; fusing parts of the magnetic layer to the surface of the workpiece by acting on the workpiece with radiation within the encoding area; cooling the workpiece; removing the non-fused parts of the magnetic layer. The method permits the workpieces to be trackable in a simple manner, irrespective of surface treatments that may possibly be carried out or are to be carried out later.
    Type: Grant
    Filed: August 12, 2019
    Date of Patent: June 28, 2022
    Assignee: TRUMPF Werkzeugmaschinen GmbH + Co. KG
    Inventors: Berthold Schmidt, Klaus Bauer, Eberhard Wahl, Andreas Popp
  • Publication number: 20190358743
    Abstract: A method for encoding a plate-like workpiece comprising: defining an encoding area; applying a magnetic layer to the surface of the workpiece; fusing parts of the magnetic layer to the surface of the workpiece by acting on the workpiece with radiation within the encoding area; cooling the workpiece; removing the non-fused parts of the magnetic layer. The method permits the workpieces to be trackable in a simple manner, irrespective of surface treatments that may possibly be carried out or are to be carried out later.
    Type: Application
    Filed: August 12, 2019
    Publication date: November 28, 2019
    Inventors: Berthold Schmidt, Klaus Bauer, Eberhard Wahl, Andreas Popp
  • Patent number: 7715457
    Abstract: Semiconductor laser diodes, particularly high power AlGaAs-based ridge-waveguide laser diodes, are often used in opto-electronics as so-called pump lasers for fiber amplifiers in optical communication lines. To provide the desired high power output and stability of such a laser diode and avoid degradation during use, the present invention concerns an improved design of such a device, the improvement in particular significantly minimizing or avoiding (front) end section degradation of such a laser diode and significantly increasing long-term stability. This is achieved by separating the waveguide ridge into an active main ridge section (4) and at least one separate section (12) located at an end of the laser diode, which may be passive. The separation is provided by a trench or gap (10) in the waveguide ridge.
    Type: Grant
    Filed: November 20, 2006
    Date of Patent: May 11, 2010
    Assignee: Oclaro Technology plc
    Inventors: Berthold Schmidt, Susanne Pawlik
  • Patent number: 7623555
    Abstract: Semiconductor laser diodes, particularly high power ridge waveguide laser diodes, are often used in opto-electronics as so-called pump laser diodes for fiber amplifiers in optical communication lines. To provide the desired high power output and stability of such a laser diode and avoid degradation during use, the present invention concerns an improved design of such a device, the improvement concerns a method of suppressing the undesired first and higher order modes of the laser which consume energy and do not contribute to the optical output of the laser, thus reducing it's efficiency. This novel effect is provided by a structure comprising CIG—for Complex Index Guiding—elements on top of the laser diode, said CIG being established by fabricating CIG elements consisting of one or a plurality of layers and containing at least one layer which provides the optical absorption of undesired modes of the lasing wavelength.
    Type: Grant
    Filed: January 10, 2008
    Date of Patent: November 24, 2009
    Assignee: Oclaro Technology plc
    Inventors: Silke Traut, Berthold Schmidt, Boris Sverdlov, Achim Thies
  • Publication number: 20080273563
    Abstract: Semiconductor laser diodes, particularly high power AlGaAs-based ridge-waveguide laser diodes, are often used in opto-electronics as so-called pump lasers for fiber amplifiers in optical communication lines. To provide the desired high power output and stability of such a laser diode and avoid degradation during use, the present invention concerns an improved design of such a device, the improvement in particular significantly minimizing or avoiding (front) end section degradation of such a laser diode and significantly increasing long-term stability. This is achieved by separating the waveguide ridge into an active main ridge section (4) and at least one separate section (12) located at an end of the laser diode, which may be passive. The separation is provided by a trench or gap (10) in the waveguide ridge.
    Type: Application
    Filed: November 20, 2006
    Publication date: November 6, 2008
    Inventors: Berthold Schmidt, Susanne Pawlik
  • Publication number: 20080123697
    Abstract: Semiconductor laser diodes, particularly high power ridge waveguide laser diodes, are often used in opto-electronics as so-called pump laser diodes for fiber amplifiers in optical communication lines. To provide the desired high power output and stability of such a laser diode and avoid degradation during use, the present invention concerns an improved design of such a device, the improvement concerns a method of suppressing the undesired first and higher order modes of the laser which consume energy and do not contribute to the optical output of the laser, thus reducing it's efficiency. This novel effect is provided by a structure comprising CIG—for Complex Index Guiding—elements on top of the laser diode, said CIG being established by fabricating CIG elements consisting of one or a plurality of layers and containing at least one layer which provides the optical absorption of undesired modes of the lasing wavelength.
    Type: Application
    Filed: January 10, 2008
    Publication date: May 29, 2008
    Inventors: Silke TRAUT, Berthold Schmidt, Boris Sverdlov, Achim Thies
  • Patent number: 7218659
    Abstract: Semiconductor laser diodes, particularly high power AlGaAs-based ridge-waveguide laser diodes, are often used in opto-electronics as so-called pump laser diodes for fiber amplifiers in optical communication lines. To provide the desired high power output and stability of such a laser diode and avoid degradation during use, the present invention concerns an improved design of such a device, the improvement in particular significantly minimizing or avoiding (front) end section degradation of such a laser diode and significantly increasing long-term stability compared to prior art designs. This is achieved by establishing one or two “unpumped end sections” of the laser diode. One preferred way of providing such an unpumped end section at one of the laser facets (10, 12) is to insert an isolation layer (11, 13) of predetermined position, size, and shape between the laser diode's semiconductor material and the usually existing metallization (6).
    Type: Grant
    Filed: July 14, 2004
    Date of Patent: May 15, 2007
    Assignee: Bookham Technology plc
    Inventors: Berthold Schmidt, Susanne Pawlik, Achim Thies, Christoph Harder
  • Publication number: 20050201438
    Abstract: Semiconductor laser diodes, particularly high power ridge waveguide laser diodes, are often used in opto-electronics as so-called pump laser diodes for fiber amplifiers in optical communication lines. To provide the desired high power output and stability of such a laser diode and avoid degradation during use, the present invention concerns an improved design of such a device, the improvement concerns a method of suppressing the undesired first and higher order modes of the laser which consume energy and do not contribute to the optical output of the laser, thus reducing it's efficiency. This novel effect is provided by a structure comprising CIG—for Complex Index Guiding—elements on top of the laser diode, said CIG being established by fabricating CIG elements consisting of one or a plurality of layers and containing at least one layer which provides the optical absorption of undesired modes of the lasing wavelength.
    Type: Application
    Filed: January 21, 2005
    Publication date: September 15, 2005
    Inventors: Silke Traut, Berthold Schmidt, Boris Sverdlov, Achim Thies
  • Patent number: 6862300
    Abstract: Semiconductor laser diodes, particularly high power ridge waveguide laser diodes, are often used in opto-electronics as so-called pump laser diodes for fiber amplifiers in optical communication lines. To provide the desired high power output and stability of such a laser diode and avoid degradation during use, the present invention concerns an improved design of such a device, the improvement in particular consisting in a way of suppressing the undesired first and higher order modes of the laser which consume energy and do not contribute to the optical output of the laser, thus reducing it's efficiency. Essentially, the novel effect is provided by a structure comprising CIG—for Complex Index Guiding—elements on top of the laser diode. These CIG elements consist of one or a plurality of layers and must contain at least one layer which provides the optical absorption of undesired modes of the lasing wavelength and preferably contains an insulating layer as a first contact layer to the semiconductor.
    Type: Grant
    Filed: September 17, 2002
    Date of Patent: March 1, 2005
    Assignee: Bookham Technology plc
    Inventors: Silke Traut, Berthold Schmidt, Boris Sverdlov, Achim Thies
  • Publication number: 20050030998
    Abstract: Semiconductor laser diodes, particularly high power AlGaAs-based ridge-waveguide laser diodes, are often used in opto-electronics as so-called pump laser diodes for fiber amplifiers in optical communication lines. To provide the desired high power output and stability of such a laser diode and avoid degradation during use, the present invention concerns an improved design of such a device, the improvement in particular significantly minimizing or avoiding (front) end section degradation of such a laser diode and significantly increasing long-term stability compared to prior art designs. This is achieved by establishing one or two “unpumped end sections” of the laser diode. One preferred way of providing such an unpumped end section at one of the laser facets (10, 12) is to insert an isolation layer (11, 13) of predetermined position, size, and shape between the laser diode's semiconductor material and the usually existing metallization (6).
    Type: Application
    Filed: July 14, 2004
    Publication date: February 10, 2005
    Inventors: Berthold Schmidt, Susanne Pawlik, Achim Thies, Christoph Harder
  • Patent number: 6819702
    Abstract: A pump laser diode for providing improved stability at various operating temperatures is disclosed. It includes a Fabry-Perot cavity formed by laser facets. Bragg Gratings or Fiber Bragg Gratings (FBG) in a pump module are provided, wherein the optical mirror losses are made to increase for wavelengths longer than the required emission wavelength, thus permitting the diode to be locked to an emission wavelength while operating at different temperatures. A stack of materials with different refractive indices is deposited on the back facet of the laser diode to achieve a change in optical mirror losses over longer wavelengths.
    Type: Grant
    Filed: September 11, 2002
    Date of Patent: November 16, 2004
    Assignee: Bookham Technology plc
    Inventors: Boris Sverdlov, Berthold Schmidt
  • Patent number: 6798815
    Abstract: Semiconductor laser diodes, particularly high power ridge waveguide laser diodes, are often used in opto-electronics as so-called pump laser diodes for fiber amplifiers in optical communication lines. To provide the desired high power output and stability of such a laser diode and avoid degradation during use, the present invention concerns an improved design of such a device, the improvement in particular consisting of novel design of the ridge waveguide of the laser. Essentially the novel design consists in a segmented ridge waveguide having at least two straight segments, i.e. segments with constant, but different cross sections or widths, and at least one flared segment connecting the two different straight segments. A further improvement can be achieved by combining this approach with a laser diode design termed “unpumped end sections” and described in copending U.S. patent application Ser. No. 09/852,994, entitled “High Power Semiconductor Laser Diode”.
    Type: Grant
    Filed: April 24, 2002
    Date of Patent: September 28, 2004
    Assignee: Bookham Technology PLC
    Inventors: Berthold Schmidt, Susanne Pawlik, Norbert Lichtenstein
  • Patent number: 6782024
    Abstract: Semiconductor laser diodes, particularly high power AlGaAs-based ridge-waveguide laser diodes, are often used in opto-electronics as so-called pump laser diodes for fiber amplifiers in optical communication lines. To provide the desired high power output and stability of such a laser diode and avoid degradation during use, the present invention concerns an improved design of such a device, the improvement in particular significantly minimizing or avoiding (front) end section degradation of such a laser diode and significantly increasing long-term stability compared to prior art designs. This is achieved by establishing one or two “unpumped end sections” of the laser diode. One preferred way of providing such an unpumped end section at one of the laser facets (10, 12) is to insert an isolation layer (11, 13) of predetermined position, size, and shape between the laser diode's semiconductor material and the usually existing metallization (6).
    Type: Grant
    Filed: May 10, 2001
    Date of Patent: August 24, 2004
    Assignee: Bookham Technology plc
    Inventors: Berthold Schmidt, Susanne Pawlik, Achim Thies, Christoph Harder
  • Publication number: 20040047390
    Abstract: A pump laser diode for providing improved stability at various operating temperatures is disclosed. It includes a Fabry-Perot cavity formed by laser facets. Bragg Gratings or Fiber Bragg Gratings (FBG) in a pump module are provided, wherein the optical mirror losses are made to increase for wavelengths longer than the required emission wavelength, thus permitting the diode to be locked to an emission wavelength while operating at different temperatures. A stack of materials with different refractive indices is deposited on the back facet of the laser diode to achieve a change in optical mirror losses over longer wavelengths.
    Type: Application
    Filed: September 11, 2002
    Publication date: March 11, 2004
    Inventors: Boris Sverdlov, Berthold Schmidt
  • Publication number: 20040008746
    Abstract: Semiconductor laser diodes, particularly high power ridge waveguide laser diodes, are often used in opto-electronics as so-called pump laser diodes for fiber amplifiers in optical communication lines. To provide the desired high power output and stability of such a laser diode and avoid degradation during use, the present invention concerns an improved design of such a device, the improvement in particular consisting of novel design of the ridge waveguide of the laser. Essentially the novel design consists in a segmented ridge wave-guide having at least two straight segments, i.e. segments with constant, but different cross sections or widths, and at least one flared segment connecting the two different straight segments. A further improvement can be achieved by combining this approach with a laser diode design termed “unpumped end sections” and described in copending U.S. patent application Ser. No. 09/852 994, entitled “High Power Semiconductor Laser Diode”.
    Type: Application
    Filed: April 24, 2002
    Publication date: January 15, 2004
    Inventors: Berthold Schmidt, Susanne Pawlik, Norbert Lichtenstein
  • Patent number: 3986345
    Abstract: A device for recovering heat from dishwashing machines, especially dishwashing machines of the type in which dishes to be washed enter the dishwashing machine through an opening in one side and are removed from the dishwashing machine from an opening in the opposite side of the machine. The device has air inlet means positioned to receive heated air from the openings in the dishwashing machine and conveys the air via duct work through a heat exchanger. The heat pump compresses coolant fluid which then flows through condenser means and then to the evaporator wherein the heat exchange with the air occurs and then back to the pump. Water undergoes heat exchange with the coolant fluid in the condenser means and this water may be used during the dishwasher cycle. Control means control the supply of coolant fluid to the evaporator and the starting and stopping of the drive motor for the pump.
    Type: Grant
    Filed: April 4, 1975
    Date of Patent: October 19, 1976
    Assignee: Stierlen-Maquet AG
    Inventors: Erwin Pilz, Berthold Schmidt