Patents by Inventor Beth A Rainey

Beth A Rainey has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8716759
    Abstract: A prompt-shift device having reduced programming time in the sub-millisecond range is provided. The prompt-shift device includes an altered extension region located within said semiconductor substrate and on at least one side of the patterned gate region, and an altered halo region located within the semiconductor substrate and on at least one side of the patterned gate region. The altered extension region has an extension ion dopant concentration of less than about 1E20 atoms/cm3, and the altered extension region has a halo ion dopant concentration of greater than about 5E18 atoms/cm3. The altered halo region is in direct contact with the altered extension region.
    Type: Grant
    Filed: March 26, 2012
    Date of Patent: May 6, 2014
    Assignee: International Business Machines Corporation
    Inventors: Matthew J. Breitwisch, Roger W. Cheek, Jeffrey B. Johnson, Chung H. Lam, Beth A. Rainey, Michael J. Zierak
  • Patent number: 8278197
    Abstract: The invention provides a method to enhance the programmability of a prompt-shift device, which reduces the programming time to sub-millisecond times, by altering the extension and halo implants, instead of simply omitting the same from one side of the device as is the case in the prior art prompt-shift devices. The invention includes an embodiment in which no additional masks are employed, or one additional mask is employed. The altered extension implant is performed at a reduced ion dose as compared to a conventional extension implant process, while the altered halo implant is performed at a higher ion dose than a conventional halo implant. The altered halo/extension implant shifts the peak of the electrical field to under an extension dielectric spacer.
    Type: Grant
    Filed: May 30, 2008
    Date of Patent: October 2, 2012
    Assignee: International Business Machines Corporation
    Inventors: Matthew J. Breitwisch, Roger W. Cheek, Jeffrey B. Johnson, Chung H. Lam, Beth A. Rainey, Michael J. Zierak
  • Publication number: 20120181627
    Abstract: A prompt-shift device having reduced programming time in the sub-millisecond range is provided. The prompt-shift device includes an altered extension region located within said semiconductor substrate and on at least one side of the patterned gate region, and an altered halo region located within the semiconductor substrate and on at least one side of the patterned gate region. The altered extension region has an extension ion dopant concentration of less than about 1E20 atoms/cm3, and the altered extension region has a halo ion dopant concentration of greater than about 5E18 atoms/cm3. The altered halo region is in direct contact with the altered extension region.
    Type: Application
    Filed: March 26, 2012
    Publication date: July 19, 2012
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Matthew J. Breitwisch, Roger W. Cheek, Jeffrey B. Johnson, Chung H. Lam, Beth A. Rainey, Michael J. Zierak
  • Publication number: 20120181628
    Abstract: A prompt-shift device having reduced programming time in the sub-millisecond range is provided. The prompt-shift device includes an altered extension region located within said semiconductor substrate and on at least one side of the patterned gate region, and an altered halo region located within the semiconductor substrate and on at least one side of the patterned gate region. The altered extension region has an extension ion dopant concentration of less than about 1E20 atoms/cm3, and the altered extension region has a halo ion dopant concentration of greater than about 5E18 atoms/cm3. The altered halo region is in direct contact with the altered extension region.
    Type: Application
    Filed: March 26, 2012
    Publication date: July 19, 2012
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Matthew J. Breitwisch, Roger W. Cheek, Jeffrey B. Johnson, Chung H. Lam, Beth A. Rainey, Michael J. Zierak
  • Publication number: 20090294850
    Abstract: The invention provides a method to enhance the programmability of a prompt-shift device, which reduces the programming time to sub-millisecond times, by altering the extension and halo implants, instead of simply omitting the same from one side of the device as is the case in the prior art prompt-shift devices. The invention includes an embodiment in which no additional masks are employed, or one additional mask is employed. The altered extension implant is performed at a reduced ion dose as compared to a conventional extension implant process, while the altered halo implant is performed at a higher ion dose than a conventional halo implant. The altered halo/extension implant shifts the peak of the electrical field to under an extension dielectric spacer.
    Type: Application
    Filed: May 30, 2008
    Publication date: December 3, 2009
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Matthew J. Breitwisch, Roger W. Cheek, Jeffrey B. Johnson, Chung H. Lam, Beth A. Rainey, Michael J. Zierak
  • Publication number: 20060231924
    Abstract: The invention includes methods of fabricating a bipolar transistor that adds a silicon germanium (SiGe) layer or a third insulator layer of, e.g., high pressure oxide (HIPOX), atop an emitter cap adjacent the intrinsic base prior to forming a link-up layer. This addition allows for removal of the link-up layer using wet etch chemistries to remove the excess SiGe or third insulator layer formed atop the emitter cap without using oxidation. In this case, an oxide section (formed by deposition of an oxide or segregation of the above-mentioned HIPOX layer) and nitride spacer can be used to form the emitter-base isolation. The invention results in lower thermal cycle, lower stress levels, and more control over the emitter cap layer thickness, which are drawbacks of the first embodiment. The invention also includes the resulting bipolar transistor structure.
    Type: Application
    Filed: June 29, 2005
    Publication date: October 19, 2006
    Inventors: Thomas Adam, Kevin Chan, Alvin Joseph, Marwan Khater, Qizhi Liu, Beth Rainey, Kathryn Schonenberg
  • Publication number: 20060154423
    Abstract: Methods for forming a spacer (44) for a first structure (24, 124), such as a gate structure of a FinFET, and at most a portion of a second structure (14), such as a fin, without detrimentally altering the second structure. The methods generate a first structure (24) having a top portion (30, 130) that overhangs an electrically conductive lower portion (32, 132) and a spacer (44) under the overhang (40, 140). The overhang (40, 140) may be removed after spacer processing. Relative to a FinFET, the overhang protects parts of the fin (14) such as regions adjacent and under the gate structure (24, 124), and allows for exposing sidewalls of the fin (14) to other processing such as selective silicon growth and implantation. As a result, the methods allow sizing of the fin (14) and construction of the gate structure (24, 124) and spacer without detrimentally altering (e.g., eroding by forming a spacer thereon) the fin (14) during spacer processing.
    Type: Application
    Filed: December 19, 2002
    Publication date: July 13, 2006
    Inventors: David Fried, Edward Nowak, Beth Rainey
  • Publication number: 20050151225
    Abstract: The invention includes methods of fabricating a bipolar transistor that adds a silicon germanium (SiGe) layer or a third insulator layer of, e.g., high pressure oxide (HIPOX), atop an emitter cap adjacent the intrinsic base prior to forming a link-up layer. This addition allows for removal of the link-up layer using wet etch chemistries to remove the excess SiGe or third insulator layer formed atop the emitter cap without using oxidation. In this case, an oxide section (formed by deposition of an oxide or segregation of the above-mentioned HIPOX layer) and nitride spacer can be used to form the emitter-base isolation. The invention results in lower thermal cycle, lower stress levels, and more control over the emitter cap layer thickness, which are drawbacks of the first embodiment. The invention also includes the resulting bipolar transistor structure.
    Type: Application
    Filed: November 12, 2004
    Publication date: July 14, 2005
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Thomas Adam, Kevin Chan, Alvin Joseph, Marwan Khater, Qizhi Liu, Beth Rainey, Kathryn Schonenberg
  • Patent number: 6642090
    Abstract: The present invention thus provides a device structure and method for forming fin Field Effect Transistors (FETs) that overcomes many of the disadvantages of the prior art. Specifically, the device structure and method provides the ability to form finFET devices from bulk semiconductor wafers while providing improved wafer to wafer device uniformity. Specifically, the method facilitates the formation of finFET devices from bulk semiconductor wafers with improved fin height control. Additionally, the method provides the ability to form finFETs from bulk semiconductor while providing isolation between fins and between the source and drain region of individual finFETs. Finally, the method can also provide for the optimization of fin width. The device structure and methods of the present invention thus provide the advantages of uniform finFET fabrication while using cost effect bulk wafers.
    Type: Grant
    Filed: June 3, 2002
    Date of Patent: November 4, 2003
    Assignee: International Business Machines Corporation
    Inventors: David M. Fried, Edward J. Nowak, Beth A Rainey, Devendra K. Sadana