Patents by Inventor Beth S. Guiton

Beth S. Guiton has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10312081
    Abstract: The present invention provides integrated nanostructures comprising a single-crystalline matrix of a material A containing aligned, single-crystalline nanowires of a material B, with well-defined crystallographic interfaces are disclosed. The nanocomposite is fabricated by utilizing metal nanodroplets in two subsequent catalytic steps: solid-liquid-vapor etching, followed by vapor-liquid-solid growth. The first etching step produces pores, or “negative nanowires” within a single-crystalline matrix, which share a unique crystallographic direction, and are therefore aligned with respect to one another. Further, since they are contained within a single, crystalline, matrix, their size and spacing can be controlled by their interacting strain fields, and the array is easily manipulated as a single entity—addressing a great challenge to the integration of freestanding nanowires into functional materials.
    Type: Grant
    Filed: December 6, 2016
    Date of Patent: June 4, 2019
    Assignee: UNIVERSITY OF KENTUCKY RESEARCH FOUNDATION
    Inventors: Beth S. Guiton, Lei Yu
  • Publication number: 20180019122
    Abstract: The present invention provides integrated nanostructures comprising a single-crystalline matrix of a material A containing aligned, single-crystalline nanowires of a material B, with well-defined crystallographic interfaces are disclosed. The nanocomposite is fabricated by utilizing metal nanodroplets in two subsequent catalytic steps: solid-liquid-vapor etching, followed by vapor-liquid-solid growth. The first etching step produces pores, or “negative nanowires” within a single-crystalline matrix, which share a unique crystallographic direction, and are therefore aligned with respect to one another. Further, since they are contained within a single, crystalline, matrix, their size and spacing can be controlled by their interacting strain fields, and the array is easily manipulated as a single entity—addressing a great challenge to the integration of freestanding nanowires into functional materials.
    Type: Application
    Filed: December 6, 2016
    Publication date: January 18, 2018
    Inventors: Beth S. Guiton, Lei Yu
  • Patent number: 8918152
    Abstract: Disclosed are devices comprising multiple nanogaps having a separation of less than about 5 nm. Also disclosed are methods for fabricating these devices.
    Type: Grant
    Filed: February 13, 2008
    Date of Patent: December 23, 2014
    Assignee: The Trustees Of The University Of Pennsylvania
    Inventors: Douglas R. Strachan, Danvers E. Johnston, Beth S. Guiton, Peter K. Davies, Dawn A. Bonnell, Alan T. Johnson, Jr.
  • Publication number: 20100144535
    Abstract: Disclosed are devices comprising multiple nanogaps having a separation of less than about 5 nm. Also disclosed are methods for fabricating these devices.
    Type: Application
    Filed: February 13, 2008
    Publication date: June 10, 2010
    Applicant: The Trustees of the University of Pennsylvania
    Inventors: Douglas R. Strachan, Danvers E. Johnston, Beth S. Guiton, Peter K. Davies, Dawn A. Bonnell, Alan T. Johnson, JR.