Patents by Inventor Beverly J. Canham

Beverly J. Canham has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10115606
    Abstract: Methods of forming a microelectronic packaging structure and associated structures formed thereby are described. Those methods and structures may include modifying an underfill material with one of a thiol adhesion promoter, an azole coupling agent, surface modified filler, and peroxide based cross-linking polymer chemistries to greatly enhance adhesion in package structures utilizing the embodiments herein.
    Type: Grant
    Filed: April 26, 2016
    Date of Patent: October 30, 2018
    Assignee: Intel Corporation
    Inventors: Yiqun Bai, Yuying Wei, Arjun Krishnan, Suriyakala Ramalingam, Yonghao Xiu, Beverly J. Canham, Sivakumar Nagarajan, Saikumar Jayaraman, Nisha Ananthakrishnan
  • Publication number: 20170053858
    Abstract: Embodiments herein may relate to a patch on interposer (PoINT) architecture. In embodiments, the PoINT architecture may include a plurality of solder joints between a patch and an interposer. The solder joints may include a relatively high temperature solder ball and a relatively low temperature solder paste that at least partially surrounds the solder ball. Other embodiments may be described and/or claimed.
    Type: Application
    Filed: August 20, 2015
    Publication date: February 23, 2017
    Inventors: Jan Krajniak, Carl L. Deppisch, Kabirkumar J. Mirpuri, Hongjin Jiang, Fay Hua, Yuying Wei, Beverly J. Canham, Jiongxin Lu, Mukul P. Renavikar
  • Publication number: 20160240395
    Abstract: Methods of forming a microelectronic packaging structure and associated structures formed thereby are described. Those methods and structures may include modifying an underfill material with one of a thiol adhesion promoter, an azole coupling agent, surface modified filler, and peroxide based cross-linking polymer chemistries to greatly enhance adhesion in package structures utilizing the embodiments herein.
    Type: Application
    Filed: April 26, 2016
    Publication date: August 18, 2016
    Inventors: Yiqun Bai, Yuying Wei, Arjun Krishnan, Suriyakala Ramalingam, Yonghao Xiu, Beverly J. Canham, Sivakumar Nagarajan, Saikumar Jayaraman, Nisha Ananthakrishnan
  • Patent number: 9330993
    Abstract: Methods of forming a microelectronic packaging structure and associated structures formed thereby are described. Those methods and structures may include modifying an underfill material with one of a thiol adhesion promoter, an azole coupling agent, surface modified filler, and peroxide based cross-linking polymer chemistries to greatly enhance adhesion in package structures utilizing the embodiments herein.
    Type: Grant
    Filed: December 20, 2012
    Date of Patent: May 3, 2016
    Assignee: Intel Corporation
    Inventors: Yiqun Bai, Yuying Wei, Arjun Krishnan, Suriyakala Ramalingam, Yonghao Xiu, Beverly J. Canham, Sivakumar Nagarajan, Saikumar Jayaraman, Nisha Ananthakrishnan
  • Publication number: 20140175634
    Abstract: Methods of forming a microelectronic packaging structure and associated structures formed thereby are described. Those methods and structures may include modifying an underfill material with one of a thiol adhesion promoter, an azole coupling agent, surface modified filler, and peroxide based cross-linking polymer chemistries to greatly enhance adhesion in package structures utilizing the embodiments herein.
    Type: Application
    Filed: December 20, 2012
    Publication date: June 26, 2014
    Inventors: Yiqun Bai, Yuying Wei, Arjun Krishnan, Suriyakala Ramalingam, Yonghao Xiu, Beverly J. Canham, Sivakumar Nagarajan, Saikumar Jayaraman, Nisha Ananthakrishnan
  • Patent number: 6974726
    Abstract: A silicon wafer has a plurality of integrated circuits terminated on a surface of the silicon wafer. The silicon wafer has a soluble protective coat on the surface of the silicon wafer. The coated silicon wafer may be processed by laser scribing. A solvent wash may be used to remove the soluble protective coat and debris from laser scribing. The coated silicon wafer may be saw cut after laser scribing. A flow of solvent may be provided during the saw cutting. The flow of solvent may be sufficient to remove at least a substantial portion of the soluble protective coat.
    Type: Grant
    Filed: December 30, 2003
    Date of Patent: December 13, 2005
    Assignee: Intel Corporation
    Inventors: Ashay A. Dani, Gudbjorg H. Oskarsdottir, Chris Matayabas, Jr., Sujit Sharan, Chris L. Rumer, Beverly J. Canham