Patents by Inventor Bhalchandra Pathak

Bhalchandra Pathak has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240201767
    Abstract: The present disclosure relates to utilizing a host failure recovery system to efficiently and accurately determine the health of host devices. For example, the host failure recovery system detects when a host server is failing by utilizing a power failure detection model that determines whether a host server is operating in a healthy power state or an unhealthy power state. In particular, the host failure recovery system utilizes a multi-layer power failure detection model that determines power-draw failure events on a host device. The failure detection model determines, with high confidence, the health of a host device based on power-draw signals and/or usage characteristics of the host device. Additionally, the host failure recovery system can initiate a quick recovery of a failing host device.
    Type: Application
    Filed: December 20, 2022
    Publication date: June 20, 2024
    Inventors: Emma Sutherland BOYD, Shekhar AGRAWAL, Amruta Bhalchandra PATHAK, Yu YAO, Aravind Narayanan KRISHNAMOORTHY, Derek James BOYER, Binit Ranjan MISHRA, Gaurav JAGTIANI, Abhay Sudhir KETKAR, Tri Minh TRAN
  • Patent number: 11733459
    Abstract: The present disclosure provides a method for modification of surface of an initial optical fiber preform. The initial optical fiber preform is manufactured using at least one preform manufacturing process. The surface of the initial optical fiber preform is treated with 50-70 liters of chlorine per square meter of the surface of the initial optical fiber preform. The surface of the initial optical fiber preform is flame polished using a flame polishing module. The treatment of the surface of the initial optical fiber preform with chlorine and flame polishing of the surface of the initial optical fiber preform collectively converts the initial optical fiber preform into a modified optical fiber preform.
    Type: Grant
    Filed: February 26, 2019
    Date of Patent: August 22, 2023
    Inventors: Pramod Watekar, Annesha Maity, Manoj Mittal, Sandeep Gaikwad, Sham Nagarkar, Bhalchandra Pathak, Sathis Ram
  • Patent number: 10955612
    Abstract: Embodiments describe an optical fiber that includes a core. The core has high compressive stress. The compressive stress of the core is in a range of about 20 to 60 MPa. The optical fiber further includes a cladding. The cladding is divided into a first cladding layer and a second cladding layer. The second cladding layer has a high residual stress. The high residual stress of the second cladding layer is in a range of about 20 to 60 MPa. The optical fiber enables reduction of particle related breaks. Further, the optical fiber has elevated LLT strength. The LLT strength is about 6 Kg. The optical fiber has high proof test yield. Furthermore, the optical fiber is highly sensitive to micro-bending of the optical fiber.
    Type: Grant
    Filed: February 26, 2019
    Date of Patent: March 23, 2021
    Assignee: Sterlite Technologies Limited
    Inventors: Pramod Watekar, Annesha Maity, Manoj Mittal, Sandeep Gaikwad, Sham Nagarkar, Bhalchandra Pathak, Sathis Ram
  • Publication number: 20200209475
    Abstract: The present disclosure provides a method for modification of surface of an initial optical fiber preform. The initial optical fiber preform is manufactured using at least one preform manufacturing process. The surface of the initial optical fiber preform is treated with 50-70 liters of chlorine per square meter of the surface of the initial optical fiber preform. The surface of the initial optical fiber preform is flame polished using a flame polishing module. The treatment of the surface of the initial optical fiber preform with chlorine and flame polishing of the surface of the initial optical fiber preform collectively converts the initial optical fiber preform into a modified optical fiber preform.
    Type: Application
    Filed: February 26, 2019
    Publication date: July 2, 2020
    Inventors: Pramod Watekar, Annesha Maity, Manoj Mittal, Sandeep Gaikwad, Sham Nagarkar, Bhalchandra Pathak, Sathis Ram
  • Publication number: 20200209469
    Abstract: The present disclosure provides an optical fiber. The optical fiber includes a core. The core has high compressive stress. The compressive stress of the core is in a range of about 20 to 60 MPa. The optical fiber includes a cladding. The cladding is divided into a first cladding layer and a second cladding layer. The second cladding layer has a high residual stress. The high residual stress of the second cladding layer is in a range of about 20 to 60 MPa. The optical fiber enables reduction of particle related breaks. Further, the optical fiber has elevated LLT strength. The LLT strength is about 6 Kg. The optical fiber has high proof test yield. Furthermore, the optical fiber is highly sensitive to micro-bending of the optical fiber.
    Type: Application
    Filed: February 26, 2019
    Publication date: July 2, 2020
    Inventors: Pramod Watekar, Annesha Maity, Manoj Mittal, Sandeep Gaikwad, Sham Nagarkar, Bhalchandra Pathak, Sathis Ram